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Abstract

It is well known that certain spontaneously broken gauge theories
give rise to stable strings or vortex lines. In this dissertation we shall
review the mechanisms of their formation in field theories, together
with the topological constraints on the manifold of degenerate vacua.
We shall then turn towards their possible role in the Universe. In the
final two sections we shall discuss an interesting possibility of having a
cosmic string which behaves like a superconducting wire with bosonic
charge carriers.
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1 Introduction to Topological Defects

In the following three subsections we shall discuss the basic mechanisms of
the formation of point-like (monopoles), line-like (cosmic strings) and wall-
like (domain walls) defects predicted in certain field theories. We shall focus
our attention to local cosmic strings (line-like defects) as our main aim is to
discuss the possibility of superconductivity in these line-like defects. Also
they might have a role to play in the formation of large scale structure in the
universe. We shall be discussing their formation purely at the field theory
level without any mention of cosmology. Their cosmological consequences
will be discussed in the next section.

1.1 Domain Walls

Let us begin with a very simple model which exhibits the formation of domain
walls. Consider a real scalar field ¢ with the Lagrangian

L= 50,696~ V(4) (1)

where the potential is of the form (see Figure 1)
I
V() = 7A(# ) (2

Obviously, the Lagrangian has the discrete symmetry ¢ — —¢. How-
ever, as can be seen from the figure, the only value of ¢ which respects this
symmetry is ¢ = 0. But ¢ = 0 is a local maxima. The field will relax to
lower energy values of either v or —v, which are the two degenerate minima
of the potential. One can ask the question what will be the equilibrium field
configuration, or the vacuum expectation value of ¢. Either value will suffice.
It is possible for the field to take one value < ¢ >= v in one region of space
and the other value < ¢ >= —v in another part of space. If it happens to
be the case, then somewhere in the middle < ¢ > must go to zero, as one
cannot go continuously from < ¢ >=v to < ¢ >= —v. If < ¢ >= 0 then it
means that the state of higher energy is trapped in between the two regions.
It should be noted that this region must either be infinite or closed, otherwise
it would be possible to continuously go over this region. Such infinite walls
of trapped energy density are called Domain Walls (see Figure 2).
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With the above Lagrangian, Euler-Lagrangian equations give the equa-
tion of motion for ¢,
0%+ Ap(4° —v°) =0 (3)

Chosing the boundary conditions to be < ¢ >— +v as z — oo and < ¢ >—
—v as z — —o0, we get the lowest-energy static solution of this equation as

$o(2z) = vtanh(z/§) (4)
where
_ Ayel
5= (3yv 5

can be regarded as the thickness of the domain wall. This solution is plotted
in Figure 3a. The stress tensor for the domain wall is obtained from the
expression for the stress-energy tensor for a scalar field

Ty = 0,90,¢ — Ly, (6)
Using the wall solution we obtain
T.= %v“ cosh™(z/6) diag(1,1,1,0) (7)

This shows that the x- and y-components of the pressure are equal to minus
the energy density, whereas the x-component vanishes. The energy density
associated with the wall, i.e., 72, as a function of z, is a bell-shaped function
and plotted in Figure 3b. Using this we can calculate the surface energy
density of the domain wall as

+o0
o= s = 2—\3/3(%)1/%3 (8)

—00

which is obviously equal to the integrated transverse components of the stress,
that is, the surface tension in the wall is precisely equal to the surface energy
density.

For the stress tensor

T;w = dlﬂ._g(p, =P1, — P2, _p3)a (9)
the Newtonian limit of Poisson’s equation is

Vie =47G(p + pr + p2 + ps) (10)
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For the domain wall lying along z-plane, p; = 0 and p; = p; = —p, and so
we get

V2@ = —47Gp (11)

This negative sign has the important effect that the gravitational field of the
wall is repulsive, i.e., gravitational test particles are repelled by an infinite

domain wall.

1.2 Strings or Vortex Lines

In the following sections we shall start with a discussion of local strings arising
from spontaneous breaking of a U(1) gauge symmetry. Then we shall discuss
the possibility of having string solutions for the case of symmetry breaking
of higher symmetry groups. In the third section we shall talk about global
strings and how they differ in their properties from local strings.

From the point of view of particle physicists, cosmic strings are one di-
mensional topological defects arising in some grand unified gauge theories.
For astronomers they can also be viewed as lines of trapped energy density
which is frozen in during the very early Universe.

1.2.1 Local strings

The simplest model which admits a string solution is that of a complex scalar
field with the following Lagrangian, invariant under U(1) gauge transforma-
tions.

L= D,4D"6 1P — V(9) (12)
where 5
V(9) = A8 — ")’ (13)
with
Dyt = (8, — 19A,)$ (14)
and
F, =0,A, —0,A, (15)

The potential in the above equation is the famous Mexican hat potential
plotted in Figure 4.




The above Lagrangian is invariant under ¢ — $e'®®) The ground state
is < ¢ >= ne™). As @ is x, dependent, it can take arbitrary values al
different space-time points. But ¢ is single valued, and so the total change
in # around any closed loop must be 27n, where n is an integer. Suppose we
find a closed loop with n = 1. Imagine shrinking it to a point. If no zeros
of ¢ are encountered, n cannot discontinuously change fromn =1 ton = 0.
Somewhere within the loop ¢ must go to zero, which means that the phase )
is ill-defined at that point (point A in the figure 5). In fact ¢ should be zero
not only at A but on points above and bellow it (like B, C,.. and X, Y,..),
otherwise it would be possible to deform the loop a little bit and then shrink
it over < ¢ >= 0. This line of trapped energy density is called a String or
Vortex line (see Figure 5). Because of the reasons given above, they must
either be in the form of infinite string or closed loop. The radius of the string
core is approximately equal to the Compton wavelengths of the Higgs and
vector mesons, i.e., &y ~ m;l and 64 ~ m3".

Let us now calculate the magnetic flux of such an string. At large distance
from the string, the scalar field takes the form

#(r) = ne™ (16)

To make the energy per unit length of a string at large distance from the
string finite we must have D,¢ = 0. This is because the energy density, for
a static configuration,0 is given by the integral of Hamiltonian

p= [ dalzD¢' - D+ V(9 (17)

The second term is zero at large distances (see the form of ¢ at large dis-
tances). The first term must also vanish to make the whole thing finite. The
requirement D, = 0 at large distances from the string thus gives

= -_?"a,, 1:4%) = Ea“ﬂ (18)

The form of A, is such that F,, = 0, so the energy density vanishes outside

the string core. Note that it is essential to have a gauge field to get a finite

energy solution at infinity. Also note that at the core of the string both the

fields ¢ and A, vanish. Since B =V x A, from stokes’s theorem we get
2rn

/Edﬁ%’:fﬁ-it:'?‘jvun(%))-dz:T (19)
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This equation shows thal, string carries n units of magnetic flux 2x/g. String
can therefore be thought of as a relativistic analogue of quantized flux tubes

in an ordinary superconductor.

Finally we calculate the energy-momentum tensor for a cosmic string.
Ignoring their internal structure as compared to their cosmological dimension,
we can average over the cross section. For a static straight string lying along
the z-axis we define

Ti= b6(z)8(y) [ Tdady (20)
The string solution i is mvanant under Lorentz boosts in the z-direction (and

in time) and thus Té'—T 3 with all other off-diagonal components equal to
zero. To show that the remaining diagonal components are also zero we use
the conservation law 77, = 0 to get (z, j = 1,2)

h fﬂ{jzkd:cdy=0 (21)
Integrating by parts we get
f T*dzdy = 0 (22)
Thus, the energy-momentum tensor of the string is given by
T¥=  diag(1,0,0,—1)8(z)6(y) (23)

Note that the pressure is negative-it is a string tension. Thus the tension
along the string is equal to the energy density.
Here again we use the Poisson’s equation to get

Ve =0 (24)
which suggests that the space outside of an infinite string is flat. We shall
discuss this point further in the section on topological defects in the Universe.
1.2.2 More complicated strings

In the previous section we discussed the formation of vortex line only for
the case when U(1) symmetry is spontaneously broken. However the forma-
tion of strings is possible under fairly general assumptions about the gauge
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groups involved. To this end we would like to borrow a theorem from theory
of homotopy groups.

A Useful Theorem:
Consider a chain of symmetry breakings G — H — H ---. Let M be the
manifold of degenerate vacua. This means that we have a symmetry group
G which is spontaneously broken by a Higgs field ¢ to a subgroup H. So
we can write H = {g € G : g¢ = ¢}. Thus if we have one point 7 on the
minimum of M we can obtain any other point by applying elements of G to
n. Note that M cannot be the entire G because if we apply two different
elements ¢ and ¢ we may obtain the same point on M i.e., g¢ = g &. This
is true iff g'¢' € H so that g and ¢ are related by left multiplication in
H. Hence we can identify M with G/H i.e., M = G/H, where equality sign
represents isomorphism. Then we have the following theorem:
If

:‘Tn(G) = 11'1':—_1(,6) = I:

then |
Ta(M) = w,1(H) (25)

For example if

m(G) = mo(G) = I

then we get
m(M) = mo(H) (26)
This shows that strings can be formed in a phase transition G — H if
WD(H. ) ?’-’ /8
Hence we can classify the defects in the following way:
Defect classified according to
Wall mo( M)
String (M)

Monopole———m,( M)

So for the case of Domain walls, mo(M) counts the disconnected pieces in
the manifold of degenerate vacua. We shall discuss these matters a little
further in the next chapter when we come to the cosmological consequences
of these strings.




1.2.3 Global strings

The topological reasons for the formation of global strings are the same as
for the formation of local strings. We just put A, = 0 in the Lagrangian for
a complex scalar, field. The only difference comes from the fact that now we
don’t have a compensating field to make the covariant derivative of ¢ equal
to zero, at large distances from the string. The Lagrangian now becomes

L= 10°49,6 — 3(616— ") (27)

It has a U(1) symmetry ¢ — €'“¢ where a is a constant. Here again
< ¢ >= 0 is an higher energy state and will relax to lower energy states.
The vacuum expectation value of ¢ is < ¢ >= ve'®®) As before v i.e.,
| < ¢ > | is fixed by the model, but 8(z) which is position dependent, can
be anything. This fact again gives rise to the formation of line-like defects
called global strings. A straight global string along the +z-axis is the static
configuration

#(z) = vf(r)e? (28)
where 8 and r are the polar coordinates in the plane perpendicular to z-axis.
The function f obeys the boundary conditions
f—lasr — o0
f—0asr—20
and is such that the equation of motion

0,0"¢ = A(¢'p —v?)¢ (29)
is obeyed. So at large distances from the string we can write
$(z) = ve sl (30)

where a is the Nambu-Godstone boson associated with the spontaneous
breaking of the global /(1) symmetry.
We can calculate the energy per unit length of the straight string as

o=/ d“:c[%c%* .36+ V(4)] (31)

At large distances from the string core, the second term does not contribute
and we get, using eq.28 for large r

rLd
p= rvzj‘; Tr = mo’In(L/6) (32)
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- A ;
as d = B%%, and where L is a large distance cutoff. & is the ‘core® of the
string, inside which the limit f50z — 1 is not valid.

For a straight global string along the z-axis, the energy momentum tensor

is (from equation 6)
. Too(x) = v?/2r?
To: =0
vz o ol ~n -
Tx) = -2—13(zz + 606 — rr) (33)
outside the string core. Einstein's equations (in the linear approximation)
then give the following form of the metric

ds? = (1 —4xGv® In(r/6))(—dt* +dz*) + dr? + (1 - 87Gv*(In(r/d) + c))rde?
(34)

where c is the energy per unit length of the string core in units of mv?. The

important difference from local string case is that the angle deficit

o(r) = 8x*Gv*(In(r/6) + ¢) (35)

increases logarithmically with the distance 7 to the string center. Also, from
Poisson’s equation, we can see that the global string produces a repulsive
gravitational potential. At large distances from the string

2rGv?
r

(36)

y=

Global strings may arise whenever a global symmetry is broken. One of
the most common example is the breaking of global U(1) axial symmetry
of QCD Lagrangian (the so called Peccei-Quinn or PQ symmetry). The
Goldstone bosons arising due to the breaking of this axial symmetry are
called axions and the corresponding strings are known as axionic strings.

1.3 Monopoles

As discussed in the previous section, the formation of topological defects is
dictated by the topology of the gauge groups involved. In particular we saw
that strings can be formed whenever mo( H) is nontrivial. The next higher
possibility is to have 71(H) non trivial. The defects which originate in such
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a symmetry breaking are called monopoles (see Figure 6) and are point-like
defects. It should be kept in mind that they are not the Dirac monopoles
of classical electricity and magnetism. However, as we shall see, they can
be thought of as quantum analogues of the Dirac monopoles. The simplest
example of a gauge theory which predicts monopole solutions is the SU(2)
model of Georgi and Glashow. It contains a massless photon and two charged
weak bosons that acquire mass from a Higgs isotriplet. It is ruled out by the
experimental discovery of neutral currents. As it illustrates the formation
of monopoles rather well, we shall consider this model. It has the following
Lagrangian with an isotriplet of Higgs scalars ¢' (: = 1,2,3)

L= —{FE, + 5(D*6)(Dud) - V(&) (37)

where the field strength tensor is
F;u =0,A — a‘,A;; - ee‘j"Af;Af (38)
and the covariant derivative is
D,¢' = 8,4 — ec’* A o (39)
The Higgs potential has again the usual structure
e
V(9) = @ F -0 (40)

The values of ¢ which minimize this potential constitute a sphere in the
isospin space and hence are related to each other by an internal SO(3) trans-
formation. However we if choose the ground state for the Higgs to be

¢ =(0,0,v) (41)

then this symmetry is spontaneously broken, and SO(3) — SO(2) = U(1)
because ¢ is still invariant under SO(2) rotations about the third axis. Once
again, the finite-energy solution is obtained by requiring that as r — oo and
¢ — constant and D, ¢ — 0. The simplest possibility is to take (keeping in
mind the vacuum expectation value of ¢),

#(r) = v, $%(r) =0 (42)
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in all directions in space, as in Figure 7. Another nontrivial and interesting
possibility is to take ‘ _

¢'(r) — vr'
where 7' is a unit vector in the direction 7 (z = 1,2,3) in coordinate space.
This means that we have correlated the "direction” of ¢ in the internal space
with the direction in coordinate space. Such a solution is sometimes called
the "hedgehog” solution (see Figure 7). Using the condition on covariant
derivative we get for A

. rk

Al(r) — €5— 43
I( ) gk erg ( )

With A} = 0 we obtain E; — 0 and B; — X5 which is a radial magnetic

field, like that of a Dirac monopole. The total magnetic flux through the

sphere at infinity is
4

& = 4rr’B = — (44)
e

which is the analogue of famous Dirac quantization condition for a magnetic

monopole.
There are many other interesting properties of these monopole solutions

but we shall not go into the details of them.
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2 Topological Defects in the Universe

In the last section we only discussed the possibility of having topological
defects in certain models of field theory. We shall now show that such defects
may arise during the evolution of our Universe. Before discussing this we
must clarify what we mean by phase transitions in the context of field theory
and cosmology. After having a brief discussion of this we will go on to
discuss domain walls and strings, giving some specific examples from grand
unification models.

2.1 Cosmological Phase Transition

Naively speaking, a phase transition is the transition of a system from one
physical state to another state with different physical properties, as the sys-
tem cools down (or heats up) a particular temperature 7.. However we shall
be interested in phase transitions in the context of field theory. Although it is
possible to develop the arguments without any assumptions about symmetry
groups involved or the Higgs structure, we shall consider the simplest case of
U(1) group.

Consider the following form of the Higgs potential for a complex scalar
field ¢

1
V(9) = gA(#'6 ~7)? (45)
with A > 0. The /(1) symmetry is the symmetry of phase transformations,
¢ — €'“¢. The minima of the potential is at nonzero values of ¢. So the

symmetry is spontaneously broken and ¢ acquires a vacuum expectation

value
< ¢ >=qne’ (46)

We thus have a manifold, M, of degenerate vacuum states corresponding to
different values of . In fact M is a circle of radius 7.
At finite temperatures the effective potential takes the form

Vr(¢) = AT?4'¢ + V(4) (47)

We shall assume that A > 0. This means that the effective mass of the Higgs
field is temperature dependent

m(T) = AT? — \p* (48)
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which is zero at T = T., where
T. = (AA)Y?q (49)

Unless A is very.small, we have T. ~ 5. For 7' > T., m*(T') is positive, the
minimum of V(@) is at ¢ = 0, and so the expectation value of ¢ vanishes and
the symmetry is restored. The situation is depicted in Figure 8.

We can generalize the above discussion to the case of symmetry breaking
G — H, where H includes all elements of G which leave the vacuum expec-
tation value < ¢ > invariant. The manifold of vacuum states, M, can be
identified with the coset space G'/H.

We can now recast our discussion of topological defects in Section I in a
form suitable for discussion in the context of grand unification and Cosmol-
ogy. We study the chain of symmetry breakings

G = H —s -3 SU(3). x SU@)r x U(L)y = SUB)e x Ui (50)

where each symmetry breaking occurs at a particular temperature (or en-
ergy), due the vacuum expectation value of some Higgs field.

2.2 The Kibble Mechanism

We have shown in the last section that the formation of toplogical defects
is possible if we impose conditions on the topology of M-the manifold of
degenrate vacuum states. In this section we shall show that their formation
is inevitable if we consider certain grand unification model in the context of
cosmology. The mechanism which justifies this is called Kibble mechanis.

First we introduce a correlation length £, which must be the particle
horizon in the context of cosmology. Particle horizon means the maximum
distance over which a massless particle could have propagated since the time
of big bang. The fact that the horzon distance is finite implies that at the time
of phase transition, the Higgs field must be uncorrelated on scales greater
than §.

During a SSB phase transition, some Higgs field acquire a VEV. Because
of the existence of the particle horizon, < ¢ > cannot be correlated on scales
larger than £. Thus topological defects will necessarily be produced, with an
abundance of order one per horizon volume. As they are stable, once formed,
they are "frozen in” as permanent defects.
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2.3 Formation of Domain Walls

We have already discussed the formation of Domain walls in chapter I and
we shall not repeat that discussion here. We just want to add two things.
It is possible in certain Grand Unification models to form Domain Walls
at early times in the evolution of the Universe. At that time the horizon
length was much less than the present. These walls, once formed, are stable
objects. As the Universe cools and expand, they acquire a permanent status.
Recall our expression (equation 8) for the energy density of a domain

wall.
_2

=303
For walls of cosmic sizes we can ignore their thickness. The mass of a domain
wall of dimension Ry would be My =~ oR%, and mass density p =~ o/ Ry,
where Ry ~ Hy' is the distance to the Hubble horizon. To keep p < p.,
requires

o

)23 ~ M (51)

3H, |
0 < Rupe =g G‘L (52)

Or, using ¢ ~ M3 and putting values for the parameters, we get Mx <
10~2GeV. This shows that any model which predicts domain wall formation
even at energy scales much below the electroweak breaking scale, is ruled out
by many orders of magnitude.

One possible way out of this problem is to assume that domains wall
were formed before the inflationary period (if there was any) so that they
inflated out of our horizon. However they may still have a role to play in the
formation of large scale structure. For example the recent observations that
galaxies appear to be distributed not randomly but on the surfaces of large
bubbles, might be explained on the basis of an underlying domain structure.

Now we would like to point out certain specific GUT models which predict
the formation of domain walls.

1. SU(5) invariant Lagrangian with discrete symmetry ¢ — —¢ gives rise
to a potential with two distinct vacuum states and hence to Domain
walls.

2. SO(10) model with discrete symmetry ¢ — —¢ may also give rise to
domain walls if the symmetry breaking pattern is SO(10) 13 SU(5) &
SU(3) x SU(2) x U(1)

16




2.4 Formation of Cosmic Strings

To have a rough idea of objects we are going to discuss, let us add some
typical dimensions.
Mass per unit length ~ 10 tons/cm
Width ~ 10~22 g, where ry is the radius of Hydrogen atom.
Formation time ~ 107 s after the big bang.

Recall that the mass per unit length of a cosmic string is g ~ v?. This
means that the mass of an infinite string (i.e., of the size of present horizon)

would be 5 i
~ 1015
M—F‘RH_ Hﬂ =10 (GGV
Putting the values for the parameters, i.e., v = Mx ~ 10*® GeV, a convenient
value for grand unification, we get M =~ 10'* Mg, which is of the order of the
mass of a galaxy cluster. Similarly a loop of radius L would have a mass
M =~ uL ~ v*L.

[t is possible to have a system of many strings. The typical scale of the
system is ~ £, the correlation length. If there is one string segment per
volume ~ &, then the mass density of such a system would be ps ~ =k,

Before proceeding further let us add another important fact about strings.
The metric near the string has the form

) Mg (53)

ds? = di* — dz% — dr® — (1 — 4Gp)*r*dé’ (54)

A simple coordinate transformation ¢' = (1 — 4Gp)¢ brings it to a locally
Minkowskian form. But the important point to note is that the range of
values of ¢’ is from 0 to (1 —4Gp)2x and not the usual range 0 to 27. Such
a space is called a conical space, that is, a flat space with a wedge of angular
size 87 Gy taken out and two faces of the wedge identified (see Figure 9). In
the coordinates (t,z,r,¢'), the geodesics are straight lines and particles at
rest with respect to string will remain at rest, i.e., will not experience any
gravitational attraction.

However it should be kept in mind that the space around a string is only
locally flat. Particles passing on opposite sides of the string are deflected
towards one another by an angle

A¢ =8rGu (55)

17




This means that matter passing on the opposite sides of the string is attracted
towards each other. Due to this mechanism, long string segments can give
rise to large scale structure apparent in the universe.

Another mechanism by which strings can seed structure relies on the fact

that at large distances from a loop, the gravitational field is like that of a
point mass. This means that matter may start accreting onto loops, giving
rise to objects like galaxies and clusters.

Finally we point out some grand unification models which predict strings.

1. The simplest model which predicts global cosmic strings is the well
known SU(5) model which has a U(1)p_g, global symmetry.

2. It is possible to form topologically stable strings in SO(10) model with
the following chain of symmetry breakings SO(10) My SU(5) x Z; Yy
SU(3) x U(1)em % 22
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3 Superconducting Cosmic Strings

3.1 Introduction

Upto now we were discussing the simplest cases of string formation. In the
following sections we shall show that certain models, with suitable choice
of the Higgs potential parameters, predict the formation of a superconduct-
ing cosmic string. Although it is possible to have superconductivity due to
scalars, fermions or charged vector bosons, we shall discuss only the first
case, i.e., superconductivity due to bosonic (spin-0) charge carriers. We shall
show that the essential arguments for superconductivity are particularly clear
for this case. For the other two cases we refer the reader to the literature
suggested in the last section.

3.2 Bosonic Charge Carriers

Let us first fix the notation. We are going to discuss a U(1) x U( 1) gauge
invariant Lagrangian with scalar fields o and ¢ and two vector fields A and
B. The respective gauge couplings are e and g.

We shall consider the situation where the U/(1) symmetry is spontaneously
broken due to the expectation value of the Higgs field ¢ whereas the U(1)
symmetry of electromagnetism remains intact.

Consider the Lagrangian

1 1 . i ;
Lin = _EF:” — ZRL + D,o*D"c + D,¢*D"¢ (56)
where

F, =08,A,—0,A, (57)
Ry, = 0,R, —3,R, (58)

and the covariant derivatives are
D,o = (0, + teA,)o (59)
Dy = (0, + gR,)$ (60)

and V() is the quartic gauge invariant potential of the form

V(o) = MG = 27 + {Mlof? + floPlof = m¥lof*  (61)
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where we add the following constraints whose importance will become clear

very soon.
pr, m* >0, fl¢|* —m*>0

With these conditions, it is easy to show that the minima of the potential is
at < 0 >=0, | < ¢ > | = p. This means that electromagnetism is unbroken
but the U(1) symmetry or R is spontaneously broken. The breakdown of R
leads to the existence of string solution.

In the vortex field, ¢ is independent of two coordinates, say z and t:
¢ vanishes at z = y = 0. The important point to note is that with the
particular choice of the parameters the potential energy favors < o >= 0 in
the core of the string where ¢ = 0, (< ¢ ># 0 only in the vacuum). The
kinetic energy tends to resist this as o must vanish at large distances from
the string. '

We must explore the balance between kinetic energy and potential energy.
There certainly exist a solution with both o and A, equal to zero. The
equation for small fluctuations in o around a ¢ background is

& —Via+(flo]* —m*)e =0 (62)

Assuming that the solution can be written in the form (explained later)

_U(:L‘_, Y,z,t) = E—Wtﬂ'a(ii':, y)
we get an equation for oy
£ &
(—E = ry'?)du + V(T)J[) = QJZO'U (63)

where V(r) = f|¢|* —m?. This is a two dimensional Schrodinger equation
with potential V(r).

Let us look at the behavior of the potential closely. It is attractive near
r =0, V(0) = —m?, and increases monotonically to V(o) = fu? —m? as r
increases to large values. What is more important is that there is an allowed
range of parameters in which the potential is negative definite. For example
if we take m? = fu® then this condition can be satisfied. It is known that in
two dimensions the Schrodinger equation with a negative definite potential
always has a bound state, so there is certainly a bound state if m? = fu?.
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By continuity there is also a bound state solution if m* < fu*. We shall see
that the interesting effects arise in this range.

As discussed earlier, potential energy favors o # 0 in the string. But this
means, roughly, that electromagnetism is spontaneously broken and there
will be Goldstone bosons carrying charges up and down the string.

Let oo(x,y) be the value of the o field that minimizes the energy. Then
e’y also minimizes the energy for any real constant ¥. We therefore take
the following ansatz for the o field, motivated by the fact that the string
carries massless Goldstone bosons in the z, f direction

oz, %)= e"?(:‘”au(x,y) (64)

where 9(z, ¢) is an arbitrarily slowly varying function. These excitations will
be responsible for making the string a superconducting wire.

Assuming that A, is a slowly varying function on the scale of the string
we can set A,(z,y,2,t) = A,(0,0,2,t) = A(z,1) whenever o # 0 .Using the
above form for ¥ we get the following form for the Lagrangian

L = |oo|*[(8o¥(z, ) + eAq(z, ) — (8.9(z,1) + eA.(z,1)?) (65)
which immediately gives the effective action for ¥/

I =K/dzda[(aoﬂ(z,t)+eAg(z,:)"'-(6,ﬂ(z,t)+eA=(z,t)2] (66)

where
K = [ dadylon(z,9)* (67)

To describe the long-wavelength interactions of strings with the electro-
magnetic fields we add to it the standard electromagnetic action to get

1 |
I=1Ip+Ig=—] j &z F,, F* + K ] dzdt(D:9 + eA;)? (68)

Now we can compute the electromagnetic current as J; = —81g/dA;. This
gives

Ji(z,t) = 2Ke(0:9 + eA)) (69)

Given this expression for the current we shall show that there are current
carrying states of the string which do not relax.
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First note that it is possible to define a topological invariant
7
N = }{ dfd’ (70)

where [ is a parameter along the strm_g. This essentially gives the winding
number of the ¥ field. It is obvious that total change in 9 around any closed
loop should be 27 times an integer. Thus in the above equation NV should be
an integer.

It should be kept in mind that the reasons of N being conserved are not
topological. It is only energetically favored to have N fixed. In the following
we shall try to make it clear. Consider a loop of string with some fixed N.
As 4 is the phase of the ¢ field, it is ill-defined when ¢ = 0. So NV can change
if o passes through zero at some point on the string at some time. But this
situation is not energetically favored. Hence N will remain fixed. Only when
the current flowing in the string becomes so large that its energy content is
comparable to the energy needed to set o = 0 do the process in which N
changes occur.

Let us now compute the current carried by a string (not necessarily circu-
lar) of circumference 27 R in its lowest energy state of fixed N. The equation
for the vector potential can be derived from the Lagrangian given above. We
get

V2A; —0i(V - A) = J; (71)
where we have used the previously derived value of current to get the right
hand side of this equation. It is not an easy matter to solve this equation
in general. However in the special choice of gauge V- A = 0 we can get the
solution very easily

Ai(z) = jédf (D). (72)

It should be noted that the above integral dwergeﬁ logarithmically when [ is
such that = = z(l). This singularity arises because we are assuming that the
string is of zero thickness. If we take into account the finite thickness of the
string, this singularity becomes mild. Then we can break the integral into
three pieces (one finite and two infinite). Ignoring the finite part we get, on
dimensional grounds

In(AR) ,

Aie()) = —5

Ji(z(1)). (73)
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For simplicity we shall denote J; and A; along the string as J and A re-
spectively. The above equation then says A = —In(AR)J/27. By current
conservation J is a constant along the string and so is A. This gives

9
- J = 2Ke(— + eA) (74)

Since J and A are constant along the string in this gauge, the same is true
for d/di. Since

1 dd =
we can calculate the value of this constant

di N

Combining all the above equations we finally get
2Ke N
R

S TSy

For K >> 1 we get,
2r N

J= e ln(AR) R (78)

This is the cental result of this dissertation. It shows that in the situation

where N is fixed (energetically favourable condition), there are currents on
the string which do not decay in time.

Before finishing this first section let us calculate one more thing which

is the total change in the average current on the string in an arbitrary time

dependent process. We have

o b ~ . do’
fm — 2Ke f dl(E; + eA) = 4nKeN + 2Ke fdm,v? (79)
Here N is time independent and
dz
aAL - =
faia =0 (80)
® being the magnetic flux through any surface spanning the string. So
d d®
y [=2Ke*— J
dthd 2K (81)
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One might expect that by Meissner effect, magnetic flux lines could not cross
the string and d®/dt would vanish. However this is not the case, essentially
because we are dealing with a thin superconductor whose dimensions are
much less than the characteristic magnetic penetration length.
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4 Strings in magnetic fields

In the last few sections we discussed the formation and properties of the
domain walls, cosmic strings, monopoles and superconducting cosmic strings.
Now we shall discuss the interactions of the superconducting variety with
magnetic fields.

Let us consider scattering of light by the string. To make the arguments
simple we shall assume that the light is incident at 90° to the string, with the
polarization such that the electric field vector is parallel to the string which
is lying along the z-axis.

We choose a gauge with A, = A, = A, = 0, and since the problem is
z-independent we can take A. = A(z,y,t). The equation of motion then
becomes, with A(z,y,t) = A(z,y)e ! (starting from equation 68)

(=V? + 2K e*6%(z))A(z, y) = w?A(z, ) (82)

This is a Schrodinger equation for scattering from a delta function potential.
The scattering solution obeys

A(F) = e _ 2K ¢? ] L2/ C(z,2')6% () A(F) = eF% — 2K Gz, 0)A(0),

(83)

where G(z,z’) is the Green function

d*k eck-(x—x')
£y ==
Gz, ') = ./ (27)2 k? — w? — e (84)
Using this form for G(z,z') we get
1

A(0) = (85)

T 14 2K€*G(0,0)

where G(0,0) is divergent ~ (1/27)In(A/w) (A is a cutoff), the divergence
arising again due to the fact that we have assumed zero thickness for the
string. If we take into account that fact, we get a short range but non-
singular potential in place of delta function. We take the above equation to

mearn 1

1+ Ketln(Ajw)/x

A(0) (86)
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with a cut-off A that depends on the structure of the string. The electric
field at the position of the string is proportional to A(0). Since we took the
incident wave to be ¢**, the incident wave correspond to A(0) = 1. The
fields induced by the currents excited on the string reduce A(0) by a factor
1

= 14+ Ke?2ln(Ajw)/7 (87)
One can see immediately that as A — oo, 7 — 0 and there are no currents
excited on the string and also no scattered wave. However for realistic values
of A, 7 is not extremely small. For example if we take the value A ~ 10'?
GeV (corresponding to a string of thickness about Planck length) and w ~
109" (since we cannot observe processes with longer duration than the
present age of the universe), then 5 ~ 0.6.

Now we can write the scattering solution as

A(z) = % — 2K e*pG(z, 0) (88)

Using the asymptotic form of the Green function in two dimensions

Gz, 0) 25 /i/8rwlz|e! (89)

we get the scattering amplitude as

= —2Kezq1f-8£; (90)

As K ~ 1/ X and In(A/w) >> 1, we can approximate n by
B T
T=Ke? In(A/w)
This gives, finally, the total cross section per unit length, integrated over
scattering angles, as

(91)

do T
dz  2(In(A/w)?
where A = 27 /w is the wavelength of the incident radiation.

This is an interesting result. It shows that, apart from a slowly varying
logarithm, the size of the string as measured by the scattering cross section,
is independent of its physical dimension. This means that if the string is
probed by visible light, it appears to have a thickness of a few tenths of an
angstrom. If it is probed by a light of wavelength 30000 light years (galctic
dimension) it appears to have a thickness of a few light years.

A (92)
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Suggested Readings

We have not given any specific references in the text. Rather, we have tried to
make the thesis as much self contained as possible. However we are adding a
short list of references where further references to the original literature may

be found.
Text Books
Two recent books which discuss topological defects are:

1. E. Kolb and M.S. Turner, "The Early Universe”, Addison Wesley, 1988
2. Collins, et al , "Cosmology and Particle Physics™.

Lecture notes
The following lecture notes by some of the contributors to the field are very

helpful for beginers.

1. Niel Turok, "Cosmic Strings”, lectures presented at the CCAST sym-
posium on Particle Physics and Cosmology, Nanjiing, China 30 June
- 13 July 1988. Published in: Fang and Lee (ed), "Cosmology and
Particle Physics”.

2. A. Vilenkin, "Cosmic Strings and other Topological Defects”, lectures
presented at the 8" Kyoto Summer Institute, 1985. Published in: Sato
and Inami (ed), "Quantum Gravity and Cosmology”.

Papers

1. A. Vilenkin, Phys. Rep 121 (1985) 263 . Although old, it is still a good
source of information on cosmic strings and domain walls.

2. T.W.B. Kibble, "Cosmic Strings: Current Status”, Preprint IMPE-
RIAL/TP/91 92/3.

3. T.W.B. Kibble, J. Phys. A9 (1976) 1387.

4. E. Witten, ” Superconducting strings”, Nucl.Phys. B249 (1985) 557.
The idea of superconducting cosmic strings was first introduced in this
paper. It is perhaps also the most readable introduction to the subject.
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Figure 1: The potential V
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Figure 2: Domain Wall
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Figure 3: The solution for the Higgs field
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Figure 4: Mexican hat potential
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Figure 5: Strings (a) infinite string (b) finite string loop

Figure 6: A monopole
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Figure 7: (a) The trivial solution (b) The hedgehog solution
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Figure 8: Effective Potential
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Figure 9: Space around a string
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