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Abstract

In this thesis I explore three hard processes where QCD plays a major role.

[n the first problem, different hard nuclear processes are investigated for
the possible measurcruent of the quadrupole gluon distribution, which exists only
for hadrons with spin > 1. Choosing Li* as a typical light nuclens I use the
convolution model and a QCD inspired parton reconbination model to ealeulate
cross section asynmunetries. The effects of an exotic quadrupole gluon component
upon asynmmetries in prompt photon production and J/4 leptoproduction are
estimmated. The ealculated asymmetries are quite large even though the corre-
sponding corss scetions are very small. This raises the hope that this quadrupole

asymmetry can ultilnately be measured.

The sceond problem deals with the decay of hadrons, in particular Upsilon
decay, which is one of the first applications of QCD and provides a test-bench to
study many ideas of QCD. Since it is possible to mesure the photon speetrum in
the decay T — v + 2y, one can test a theory against many data points. This is
in contrast to the prediction of total decay rate which is a single nurnber. [ use a
systematic gauge-invariant method, which starts divectly from QCD and allows
for an cxpansion in the quark rclative velocity v, a small natural parameter for
heavy quark systems. This technique is used to caleulate the rate for an upsilon
meson to decay inclusively into a prompt photon. It is found that the inclusion
of these O(v*) corrections tends to inerease the plioton rate in the middle 7 range

and to lower it for larger z, a featurc supported by the data.

[n the third, and last problem, I calculate the fragmentation function for a
charmn quark to decay inclusively into S-wave charmoniun states, including rela-
tivistic and binding cnergy corrections in powers of the quark relative velocity .
In this case the direct introduction of a gauge-link operator provides a quick route
to arriving at gauge invariant matrix elements. I also use these fragnientation
functions to estimate their contribution to the production rate of 7, and J/¢ in
Z° decay. These corrections contribute about 38% to the integrated ¢ — J/+X

fragmentation. For 7. these are found to be small.
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Chapter 1

Introduction

High-energy physics has made remarkable advances during the past few decades,
The construction of new high energy accelerators around the world made it pos-
sible to perform more precise experiinents which provide a large class of results to
be compared with the theoretical predictions, On the theoretical side, the conver-
gence of ideas due to developments in various sectors have brought to the subject
a new coherence and have raised new issues. In this introductory chapter 1 shall
begin with a quick historical review of the quark model and the achievements of
Quanturn Chromodynamics (QCD) and then go ou to review the standard model
of fundamental interactions and Perturbative QCD (PQCD [1]) in order to set
stage for my own rescarch work, The final section presents a brief summary of

my Ph.D work in the area of perturbative Quantum Chromodynarnics.

1.1 A Historical Prologue

By the cnd of 1964 some high cnergy physicists had started feeling that the
large number of hadrons known at that time hint towards a possible deeper level
of structure of hadrons. The first major theoretical step was taken by Gell-
Mann[2] who proposed that all hadrons are made up of three basic entities for

which he coined the name “quarks”. Using this model he succeeded not only



in classifying all the known hadrons but predicted the existence of a few more
particles. They were later on discovered, providing expeorimental support to an

otherwise theoretical model,

The concrete evidence for (uarks however came in 1968 from SLAC where a
couple of interesting observations were made when clectrons were fired at proton
targets, First the scattering involved large momentum transfers more frequently
than anticipated [3]. This result suggested that there were discrete scattering
centres within proton. Secondly, the distribution of scattered electrons in energy
and angle exhibited a phenomenon called scale invariance. 1t was pointed out by
Feynman that scaling could occur only if the scattering centres had no internal
strieture[d]. This paved the way to a successful parton model and its various

predictions which agree well with the data.

A carchil analysis of deep inelastic data reveals that quarks behave as if they
are free inside a hadrou. However isolated free quarks are never observed, This
fact suggests that quarks are confined within hadrons duc to a very strong force
which increases with increasing distance. No rigorous theoretical demonstration
of this effeet is yet available, it is still a conjectnre. However all the experiments
support this view of confinement. Despite the fact that QCD has so far been un-
able to provide a sound theoretical basis for confinement its predictions agree well
for high energy processes such as corss section in clectron-positron annihilation
into hadrons, structure functions in deeply ineclastic lepton-nucleon scattering,
fragmentation functions and the decay rates of quarkonia. Even the application
of PQCD to nuclei seems to be iu agreement with data. The simplest case of a
deuteron is one such example. The data on Fy{z, Q%) of the deuteron from the

NMC Collaboration are well fitted by a perturbative QCD caleulation.

However there are many aspirations in the nonperturbative reginue which re-
main unfulfilled. These include the derivation of the interaction among hadrons
ag a collective effect of the interactions among constituents, theoretical under-

standing of the details of fragmentation and decay phenomena ete. This last



problem can only be solved it one makes some reasonable model to describe the
dynamics of deeaving or produced hadron. T shall be discussing these processes
in detail in the next few chapters. But before that, let's discuss the Standard
Model of fundamental interactions which allows us to reliably calculate different

cross sections and decay rates cte.

1.2 The Standard Model

The standard model[5] of fundamental interactions has proved to be an accurate
description of nature at the highest energies available. This model is based upon
the following elements:

1} the symmetry group SU(3)¢ & SU(2), & U(1),

2) the gauge principle,

3) the Higgs mechanisin, and

4) the Yukawa couplings.

The result is a renormalizable theory which allows precise predictions from a few
input parameters, There are three types of particles in this model,

a) the gauge bosons,

b) fermions (quarks and leptons) and,

¢) scalar higgs.

The gauge bosons associated with SU(8)¢ are called gluons whereas the gauge
bosous of SU(2), # U(1) are W*, Z° and photou. As the present work is con-
cernedd with QCD, I shall confine myself to the disenssion of SU(3),.

The gluons are described by vector ficlds A (») with g a vector index and
i an SU(3)¢ color label for an 8 representation {or the adjoint representation) of
the SU(3) group. The quarks are described in terms of Dirac fields 5 . where «
is a Dirac spinor index, a is an SU(3) color label for the 3 representation {or thie
fundamental representation of the SU(3)¢:), and r = «,d, s, ¢, b or ¢ is the favour

label. The QCD lagrangian which is of interest to us, can be written in terms of



these fields :
1 .
L= —_Q-T'I‘ Piwﬂw + "/Jr(lﬂ/ D - "”?‘)Ivb"? (11)

where
F;w = a,uAu - 0UAj'i o ";.(][A;n Au]a

8 i
Ay = D T4
i

DF o= O —iAn, (1.2)

and A" are 3 x 3 matrices, called the Gell-Mann matrices, obeying the SU(3)
comrutation rclations for generators

AT AF

!:? ?} = ifijk“é‘- (1.3)
It should Le noted that the above lagrangian coutains gluon-gluon interactions
which is a key feature of non-abelian gange theories like QCD. T shall now go on

to discuss perturbative QCD (PQCD) in the next section.

1.3 Perturbative QCD

In order to make accurate and sensible predictions in QCD it is irnportant to
understand the variation of effective color charge with the separation of the two
charged particles (quarks or quark and antiquark). The whole perturbation the-
ory relies on the value of the perturbation parameter which in this case is the
conpling constant. Recall that in QED the renormalized running coupling con-
stant is given by

2\ o)
) = (1.4)

for large Q2. This incorporates all the corrections coming from 1,2,.. bubble

diagrams like those shown below
[ 1 e? ]
!



contributing to any process involving photon cxchange (like electron-positron
scattering). It describes how the offective charge depends on the separation of
the two charged particles. As Q% increases, the phioton sees more and more charge
until, at some astronomically large but finite (0%, the coupling constant is infinite.

It inereascs from 1/137 very slowly as Q* increases,

The * behaviour of QCD eoupling, «,(€%), turns ont to be very ditferent
from that for a{Q)?). Because of the possibility of sclf interactions of gluons many

more diagrams need to be considered here, For example:

-+ () +

It turns out that

2y _ ay(12°) -

@)= 1+ 2033 — 207) log(%)’ | (19

where n; is the number of flavours. Only if ny > 16 is the sign of the coeflicient

is the same as in QED. Therefore with increasing (0* the value of strong coupling

constant, decreases, making perturbative expansion more and more reliable. For

sufficiently low (04, the effective coupling will beconie large. It is usual to denote
the €2 scale at which this happens by A?, where

. . —127
A% = ¢ . .
poexp ((33 - 211;)&,(/1'3)) (1.6)

Therefore T can rewrite the above eqnation as

127

a, (%) = -
D)= @ ) lon( )

(1.7)

‘ ¥ . s . '
For (J* values much larger than A?, «, is small and a perturbative description
in terms of guarks and gluons interacting makes sense. When Q2 is of order A2,

one cannot make sueh a picture, since guarks and ghions will arrange themselves



into strongly bound hadrons. Thus A, which is a free parameter, is a boundary
between a world of quasi-free partons and the world of hadrons. One expects it

to be of the order of a typical hadron 1mass.

1.4 A brief description of Ph.D. research

In the following three sections I shall present a summary of my Ph.D. research.

1.4.1 Gluon Distribution in a Spinning Nucleus

The recent interest in the spin dependence of the gluon distribution was sparked
by the observation that quarks inside a proton carry only 4 fraction of the total
spin of the parcent particle. This hints towards a significant gluon distribution
inside: a proton. Gluons are the analogues of U(1) photon in a SU(3) theory.
Their role in a non-abelian theory is even more iinportant due to the fact that
they carry color charge and therefore their self interactions are possible. Although
gluons do not interact directly with clectrons or neutrinos, their effect can be
seen indirectly in many processes.  One such process which is studied is the
prowpt photon production in hadron-hadron collisions. This process is sensitive
to the gluon distribution because of the dominance of Compton scattering., I
have used a Li” target as a model to estimate the effects of the quark and gluon
recorebination. A parton recombination model handles the effects arising from
the close proximity or overlap of ncighbouring nucleons in a nucleus which affects
the shoit distance physics of the partons. There is a possibility of leaking of a
parton from a particular nucleon and ity fussion with a parton of a neighbouring
nucleon. Such cffects are estimated casily using the model of Close et al{7]. The
Li7 target has a closed core of J = 0 with a single proton revolving around it
with I = 1,5 = 1/2 and J = 3/2. For such a systent one can calculate both the
crossectionr and the crossection asviumetry in termus of parton level crossections

and parton distributions.



Another process where pluons play a sipnificant role at the tree level is the
leptoproduction or photoproduction of heavy flavours, It is found that the gluon
asymmetry in this case is considerably larger than the case of prompt photons.

This gives us a hope that the gluon asymnnetry will ultimately be measurerd.

1.4.2 Decays of heavy quarkonia

In the previous section I have discussed the total cross sections for two different
processes involving hadrons in the initial state, withont any concern about the
final states. However there are many interesting (nestions about the configura-
tion of final state hadrons. For example one might ask about the fate of a quark
produced in the final state, or about the subsequent decay of hadronic states pro-
duced in high-encrgy collisions, Witlr the present understanding of perturbative
QCD it is possible to study these processes to some extent. It will be shown in
the third and fourth chapters that both fragmentation and decay processes can
be decomposed into a product of two parts: a ‘hard’ part caleulable in PQCD
and a soft part that can only be modelled at present. It turns out that this

phicnomenological description is quite adequate for many processes.

Oune of the earliest applications of quantmm chromodynamics was to the
decay of 7. and .J/3 mesons. Comubined with radiative corrections, this provided
the hope of measuring the strong coupling constant, at reasonably large momen-
turn transfers. The model that was used was essentially that of Weisskopf-Van
Royen[7] for positronium decays, witlt appropriate modifications for cotor. In
this model, the annihilating fermions are on-shell but are nevertheless confined
by sorie potential. The problem with this model is that a fundamental symnmetry
of gauge theory, whether QED or QCD, is lost. Therefore there is a need to con-
struct a proper theory of quarkonia which respects gauge invariance. In this work,
I have used a systewatic approach to incorporate gauge invariance by expanding
in powers of the relative quark veloeity., Gaunge-invariance is then not destroyed

even if the quarks are taken off-shell. This treatinent automatically introduces



soft. gluons in the expansion which are essential to restore gauge-invariance,

For sufficiently high quark mass one can use perturbation theory to com-
pute the decay rate in terms of the wave function at the origin. This zeroth-order
result requires modifications due to the fact that the relative veloeity of bound
heavy quarks is not zero but that v? & 0.3 for ¢¢ and = 0.1 for bb states. The
cotrections of order »? come frow:

1) non-zero binding energy of the two quarks in the quarkonium, and

2} a wavefuniction correction whichi can be calenlated in terms of the free pa-
rameter V30(0). It is found that the inctusion of these O(v?) corrections tends
to increase the photon rate in the middle 2 range and to lower it for larger 2, «

feature supported by the data.

1.4.3 Heavy quark fragmentation functions

My interest in this arca was initiated by the obscrvation that in all existing
treatments of fragimentation, color gauge invariance is not properly accounted for,
even for twist-2 fragmentation functions, Effectively, all authors have implicitly
assumed the size of the produced meson to be so small that the gauge-link between
the quark and antiguark, which act as color sources, is a unit operator. This is
valid only in the limit of infinitely massive quarks. But ecrtainly this cannot be
true for ¢ or & quarks - even for the ¢ quark this would be trne only to a few

percent,

The first step is to write down the amplitude whicl is given by the sum
of all distinct Feynman diagrams leading from the initial state to the final state.
Eacli diagram is then put into the form of a (multiple)} loop integral with a kernel
which is a product of a hard part and a soft part. The hard part is treated with
perturbative QCD, and the soft part is analyzed into its different components

with the use of Lorentz, C, and P symunctries,

It 1s found that for fragruentation processes, diveet introduction of a link op-

crator offers a quicker route to arriving af gauge-invariant matrix eleruents. While



these cannot be caleulated ab-initio, they can be modeled in a non-relativistic
model. Alternatively, they can b extracted from experiment by examining de-

cay rates where large momentum transfers are involved.

The technique developed can be easily extended to calculate the fragmen-
tation of a ¢ (and b) quark to 177 states etc. The state 177 (J/%) is of particular
importance as its decay into lepton pairs provides an easily identifiable cxperi-

mental signature.

[ have calculated the fragmentation function for a charm quark to decay
inclusively into S-wave charmonium states, including relativistic and binding en-
crgy corrections in powers of the quark relative velocity o, Since the average value
of v* for charmoniuni is about 1/3, one expects the offect of O(v?) terms not to
be negligible. 1 found that in case of J/y these corrections contribute about 38%

to the lowest order ¢ — J/i + X result, but for 7. this contribution is small.



References

[1] There are many cxcellent accounts of QCD. Below is a short list
e ['. Halzen and A.D. Martin, “Quarks and Leptons”, John Wiley and
Sons, Ine, 1084.

e [.E. Close, “An Introduction to Quarks and Partons”, Academic Press,

1979.

e I1.D. Field, “Applications of Perturbative QCD”, Addison-Wesley Pub-
lishing Company, Inc. (1989).

V. Barger and R. Phillips, “Collider Physics”, Addison-Wesley Publish-

ing Corupany.

T. Muta, “Foundations of Quantum Chromodynamics”, World Scien-

tific Pub Co Pte Ltd, 1987.

W. Greiner and A. Schafer, "Quantum Chromodynamics”, Springer-

Verlag, 1995

[2} Gell-Mann, M. California Institute of Technology Report CTSL-20 (1961).
(Reprinted in “The Eightfold Way”, Gell-Mann and Ne’eman, Benjamin,
New York, 1964.)

[3) Panofsky, W. in Proceedings of International Symposium on High Energy
Physics, Vienna, 1968.

[4] Bjorken, J. D. in Proceedings of Jrd International Symposium on Electron

and Photon Interactions, Stanford, California, 1967. Bjorken, J. D and

10



Paschos, E. A, Phys. Rev 185, 1975 (1969). Feynman, R. P. Phys. Rev.
Lett. 23, 1415 (1969).

(5] There are inmuncrable toxts disenssing the standard model, See for example,
J. . Donoghue, E. Golowich, B. R. Holstein, * Dynamics of the Standard

Model”, Cambridge University Press, 1992,
[6] F.E. Close, J. Qiu and R.G. Roberts, Phys. Rev. D40, 2820 (1989).

[7] R. Van Royen and V.F.Weisskopf, Nuovo Cimento 50, 617, 1967.

11



Chapter 2

Gluon Distribution in a

Spinning Nucleus

The gluon asymmetry in a polarized proton has becorne the focus of considerable
interest following the EMC measurements [1] of polarization asymmetry in the
deep inelastic scattering of polarized muons on polarized protons. In this chapter
I shall be discussing in detail the gluon distributions, specifically the polarized
ones measurable in deep inelastic scattering (DIS) off nuclear targets. I will look
for processes which may provide independent direct measurements of the spin
dependence of the gluon density in a polarized nuclear target. The knowledge
of AG(z,Q?) is interesting in its own right and is necessary for extracting the
correct behaviour of the spin dependent quark and antiquark distributions from

the available DIS data.

DBefore going into the details of gluon distributions let us first look at the way
gauge fields appear in a non-Abelian group. This will help us in understanding
the self interactions of gluons - a process which plays a vital role in the gluon

recombination maodel,

The non-interacting lagrangian density can be written as

Lo = P(iv"d, — myp. (2.1)

12



Invariance of the spinor fields under the infinitesimal local gauge transformations

of the SU(3) colour group, i.c., nuder
() = [1 = dgaa(2) T[4 (), (2.2)

requires that the ordinary derivative be replaced by a covariant derivative D
defined as

D, =8, —igT,A", (2.3)

where the auxiliary field (or the gauge field) A, transfornis under the adjoint

representation of the SU(3) group, i.c.,
Al(z) = AL(z) + () + 9 funetn (@) AL (2), (2.4)
and 7, = A,/2. The Lagrangian density then becomes
Ly = P(iv* D+ m)i (2.5)
The gauge-invariant part in the lagrangian for the A field is
Ly =~ (P8 i, (2.6)
where the gluon feld tensor is defined as
FV =0 A - A — gfanc A AL (2.7)
Therefore the total lagrangian density can be written as
LC=L,+ L, (2.8)

It is straight-forward to sece that the last term of the field strength tensor gives
rise to self interactions of gluons. As the field tensor appears squared in the
lagrangian, 3-ghion and 4-gluon interactions are also possible, The present ex-
perimental situation is that there are many indirect evidences of 3-gluon vertex
but the 4-gluon vertex is still not casy to detect. I shall come back to the 3-gluon
interactions in the section on the recombination model. This ends our very bricf
tour of the theoretical arguments behind the necessity of gluons and their self

interactions in a non-abelian Yang-Mills theory.

13



Now consider the polarized gluon distributions in hadrons which is the sub-
ject of this chapter. For transverse gluons in a longitudinally polarized J = 1/2

hadron target, there is only one gluon asymmnictyy,
. 1 1
AG(z,Q*) =G} - G}, (2.9)

where 7], denote gluon Lelicities and 1/2 indicates positive helicity of the target.
But in view of discussions [2, 3] of deep inelastic scattering from polarized J > 1
targets, it is worthwhile to ask what additional glion asymmetries exist for higher
spins and whether their measurement would be interesting and possible. From
parity invariance Gff = G with —J < H < J. For J = 1 therc are two

independent asymmetries which can be chosen as
AG =Gl -G, (2.10)

and

AG = %(G§+GT—‘ - 2G7). (2.11)

The latter “guadrupole” asymmetry is interesting; it can be measured with an
unpolarized probe (sce below) and, paraphrasing the discussion for the quark
distribution in [2], it can be easily scen to vanish for two independent nucleons
in a relative s state. For p,d, f, - states it is small, of order (P2/M?). Thus it
is & good indicator of “exotic” gluons in a nucleus - L.e. the extent to which the
nuelear gluon distribution is non-additive. For .J = 3/2, the corresponding gluon

asymmetry of interest is

1 a2 1 1 _2
A£G = (G} -G} - G* + G, (2.12)
or, equivalently,
AG = Gi - Gz, (2.13)
where
GH _ l(C” + G'“”)
m— 2 1’; T .

The plan of this chapter is as follows. The first scction discusses the convo-

lution framework for the study of deep inclastic electron-nucleus scattering, Then

14



I shall focus on an aspect of perturbative QCD which is usually ignored. This is
the fusion of quarks, antiquarks and gluons of two separate nucleons in a nucleus,
In order to estimate the effects of this fusion on the nuclear gluon distribution
two processes are chiosen which involve gluons at tree level and hence are a useful

probe of nuclear gluon distribution. These are discussed in the next two sections.

2.1 The Convolution Model

To study the deeply inclastic electron-proton seattering I use the probability of
finding a quark inside a nucleon to compute the o-p scattering crossection. But,
in the case of scattering off nuclear targets one has to deal with a more difficult
problein. The essential argument of convolution inodel is that the probability
distribution of a quark in a nucleus is the product of the probability distributions
of a quark inside a nucleon and that of finding a nucleon inside a nucleus. This

is shown schematically in figure 1. Denote,

1
qi (2) = Probability distribution of a quark with helicity T in a
nucleon with helicity s = % carrying light cone momentum
fraction z of the nucleon,
qf''(x) = Trobability distribution of a quark with helicity T in a

nucleus with spin J, helicity H, carrying momentum

fraction z of the nucleus, and

JH(y) = Probability distribution of a nucleon with helicity s in a

nucleus with spin J and helicity H,

then the convolution model states that
g (z) = f/du 2y £ (y) q3(2) 8(z — y2). (2.14)

Antiquark and gluon distributions ¢/ (2) and GY"(z) arc defined similarly. In

order to calenlate f7(y), start with the definition [2, 3]

F ) = éfdgn:—"y‘”f'/ﬁ(JHl':ﬁ(F)'r‘¢'(0)|JH) : (2.15)

15
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VW\V

Figure 2.1: Convolution framework for DIS off nuclear target A

Next, insert a complete set of momentum states between the field operators,

1 = [ d"p|p){p| and use translational invariance to get
g

£10) = V2 [abo(u - EOED) P wtie), o)

where the delta functions comes from the £~ integration, In the above ¢/ (p) is
the momentum space Dirac wavefunction of a nucleon. One can further decom-

pose ¥’ () into upper and lower components,

o (5
' (p) = ,(:j
Zm {pJ (f)
where I have also used the Dirac equation to write the lower component 7/ as
94
(o) = TP, (2.17)

2m
upto corrections of the order of interaction encrgies divided by the nucleon mass.

One therefore arrives at the light-cone distribution function f#:
2 3
£ 3| I} |7 - E+4+p

(y) = fd?)!<f’ (ﬁ)\ (1+_+1M1)6(U—T : (2.18)

16




The above approximately ineludes binding of the nncleon since p® = M — ¢, as
well s the leading order relativistic effect. Since p® + p? is quite close to M, the

distribution peaks at around y = 1. This allows us to expand the delta function

. 2
in a rapidly convergent series in &(y — 1) and its derivatives. Also write cp?‘ %(ﬁ)l
in terms of spherical harmonics,

33 133 1L
p13(p) =C| {3 Yu(d ¢) olp) x? 3, (2.19)
1 2

and similatly for o3 2 2(5). In the above ¢(p) is the radial wavefunction (in mo-
mentum space) of the single nucleon state (normalized so [p? |é(p)? (1 +

p*/4M?) dp = 1). One finally arrives at the following simple exproession,

W) - fiiw) = -5 ) 28y - 1y +6"(w - 1), (2.20)

“,
Wi

wherc
2

2= [t Lyl =00 (221)

The various quadrupole asymmetries are readily computed from the above,

AG(z) = G1-G1
_ 2,7 d Gz/y) 4* G(z/y)
= —x{ym) (2 o |y ) (2.22)

The quark and antiquark distributions are obtained similarly, However | need

only the gluon asymmetry for my work.

2.2 The Parton Recombination Model

There is a modification to structure functions coming from an effect(7] which
plays an important role when the nucleons iu a nuecleus are in close proximity.
This is the leaking of partons of one nucleon into a neighibouring nueleon and their
subsequent fusion with partons of that nucleon. This is shown schematically in
Fig. 2. There arc three possible sitnations, namely quark-gluon fusion, gquark-

antiquark fusion, and glnon-gluon fusion. The physical effects of such processes

17



Figure 2.2: Three basic subprocesses contributing to ézP{z).

are largely felt at small x and at large 2. The reasons for this are very simple and
easy to understand, As shown in figure 2¢, two gluons may fuse together to form
a single gluon. This reduces the gluon distribution in a nucleus at small x. This
is called the gluon shadowing. A quark coming from a nucleon might be carrying
a large fraction of the nucleon’s mowentim and therefore, after absorbing a
gluon from another nueleon, will carry a momentum fraction > 1. Thus nuclear
stnucture functions extend beyond z = 1. However this occurs only when the
spatial overlap between nuelcons is appreciable.  When viewed in the infinite
momentum frame the nucleus is Lorentz contracted in the 2 direction and has a
longitudinal size Az 20t/ = 2m Y/ P, where m and I” are the nucleon mass and
mormentum respectively. On the other hand, the longitudinal size of a sea parton
{whether quark or gluon) is Az o~ 1/2P, where z is the fraction of the nucleon’s
momentum carried by the parton. For small 2, Az exceeds the size of the nucleus
and shadowing occurs for € 1/2mR i.e. the nuclear parton distribution is no
longer A times the nucleon pavton distribution, g # Ag”™. For sufficiently sinall
x the sea quarks and gluons from a given nucleon extend along the entire length

of the nucleus in the z direction. The muclear quark and gluon densities can be

18



written as

z Pa(z) = o P(2) + 62 P(2), (2.23)

where the first part corresponds to the convohition model and the second part
corresponds to the correction coming from recombination effects. Three basic
subprocesses illustrated in Fig, 2, gives rise to changes in éx P(z). Using old-
fashioned perturbation theory in the infinite momentum frame, all parton-parton
fusion functions are readily caleulated([7]. Consider the fusion of parton 1 with
momentum fraction z, and parton 2 with momentum fraction z, to form parton

3 with momentum fraction z3. The modification to the quark density is

bqi{z) = 2 x _2 - 2 |
x : X X
= 2K { [ @) Gyl +22)

(b — ) — 22) — 6(xz — 1))

- fcb:l oy gi(z1) Gilma)Dygmg (21, w2, 2 + 222) 8(z — 1) ], (2.24)

Similarly for antiquark distribution :

6gi(z) = 2K [fdrl a2 Gi(z1) G(z2)D gy (1, 20, 70 + 22)
(6(z — 2 — x2) — 8(z — 1))

—/tﬁ‘x dia Gi(z1) F@2)Uggmg(r, oy 20 + 22) 6(2 — ff"l)} - (2.25)
The diagrams contributing to glion distribution are,
X X *
8G(z) = | %" — :}W’ - :}w
X, X2 X

Xy

+ 2 x—}-&- —-2};{-]
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1
= 2K {—2- /rhrldj;-,, Glay) G(a2)Ty y—yl2r, T2, 2y + ap)
(82 — wy - w2) = O{a — €1} = d(x — 1))

f
+/d1:1(b:2 Zqi(rl)i]’,—(ﬂ:-_),)lﬂ,‘,,-hg(:u],3:2,;1:1 +a)(6(z — 2 — 22)

f
— /(1.1:1 dry Gl ) Z(q,-(:tg) + Gi{zo )y yglo, 20, 2y + 22)6(2 — 2y) | . (2.26)

:
The factor of two appears because the quark (or gluon) can come from cither
one of the two nucleons. The extent to which the core affeets the nuclear parton
asyrumetries s determined by the dimensionless quantity K, which is given by
2

K = 576 f @R 4°F peore(R)pu(r)6%(B — b). (2.27)
In the above, the detta function restricts the impact parameters of the nucleons
in the core and the valence nucleon to be equal. The core density pegr.(7) is taken
to be a simple gaussian,

flg —réjfpd
Peore = W o /g ' (228)

where Ay is the total number of core nucleons and % the core radius. For the
valence nucleon density py, consider a harmonic oscillator wavefunction corre-

sponding to the pa state,
P

T

Uiy =N ( ) eIy (), (2.29)

70
where N is a normalization constant, rq is the radius of the nucleon orbital, and

Vi (7} is vector spherical hiarmonic. This gives the valence nucleon density for

O o= L1
m =3 and m = g,
. - 2, —(r/ro)?
m=3 2 o Lo
Pa b= ayal = ————— sin*é, (2.30}
P 'T'B’J'Ti
: 72 o—{r/ro)?
m-1 2 ree .o .
Py 2 = l[)‘:_lll_\"{ = ———— (5in? @ + 4 cos*6). (2.31)
2 33
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The shadowing parameter K/Y for a spin J nuclens with spin projection H is,

therefore,

2 2

Lan i Ag RU

2 , . : 2.32

BT G i3y o
2 2

.3 g° Ag Ry 2

Kit = L : I — : 2.33

H Gim {3(7"é+1?6)2 3(rs + 1) (2:33)

For a nunierical estimate of the shadowing paramcters [ have used a starting value

of a(Q}) = ¢*/dx = 0.327. Typically, rg = 1.19(A3 — 0.44)% and %% = 1.83r2.

The fusion functions Ty ,_q (i, 22, 21 +2) ete., are very similar to the split-
ing functions appearing in the Altarelli-Parisi cquation and are in fact related to

them [7).

2,2 2 A2
Ty T ry+x T T
Ty gy (€1, 20,20 + ) = 1 L2 [( 1 2) 4 (z) + z2) 4 1:' !

3

4 (z) + ) &y 22
1

6

Ty 4y I +(ﬁ‘;)2
L= (59%) |

ng—»q(ﬂfiyi“z,% + 3’2) = (3:1 1 3.2)2

and

. ol Py
Xy &y [ .L]+.L-2 :' (234)

qu_.y(.’l/‘l,.'ﬂz,ilﬂ-{—l‘-z):-‘i - :

Oz, +22)? () +ay)?
Once these fusion functions are known, it is straight forward to compute the
crossection for many different processes involving a nuclear target, In the next
section I shall use themu to caleulate the crosscction for the production of prompt

photons in p-N scattering. In section 5 they will be used to estimate the crossec-

tion asymmetries for J/4¢ production in e-N scattering.

2.3 Prompt Photons in Hadron-Hadron Colli-

sions

It is well known that photons are produced eopiously in hadronie collisions. These
photons may come, c.g., from the clectromagnetic decays of directly produced

hadrons or they might be produced directly in high-energy interactions. The
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/
(b)

Figure 2.3: Lowest order Feyumann diagrams contributing to the process pp —

4X (a) Compton subprocess {(b) Annihilation subprocess.

later variety of phiotons are called prompt photons or direct photons. In order to
comparc theorctical predictions against experimental data one needs to pick high
energy processes which involve the gluon distribution directly. As the gluons carry
no electric charge, pluon distributions are only indirectly measurable in lepton-
hadron scattering., A more direct probe is provided by prompt photon production
in hadron-hadron collisions, which is dominated by the quark-gluon Coinpton
seattering diagrams of Fig.3a, with contamination ouly at the few percent level
from. quark-antiquark fusion Fig.3b. Since these investigations are exploratory,
one can ignorce the radiative corrections. The specifie situation considered is
an unpolarized proton beam striking a nuclear target with definite helicity H.
According to the usual hard scattering model,

rlrr”(.s’,J:;.-, D[) . i ay. b df}u.b .
E,Y d:‘P,., = g/dla d:l’.b P (IL“)[ ”(.II[,)E,Yd—SE, (2.30)

where E,d6,,/d? P, is the subprocess ab — vz crossection, P*(z,) is the spin-
averaged density of parton a (@ = ¢,7,G) in an unpolarized proton and P§{x)
is the spin-averaged density of parton b (b = ¢, q, &) in the nuclear target with
polarization H. The matrix clements for the two basic subprocesses are readily

conmputet,

1qu—‘w‘2 = “TSI ;

22



812 4 i?

2
My = 57705

The parton level crossections are expressible in terins of thesc as

do (3, xr, Pr)

1 ) .
y B, = (rb.,,‘rx_,glhf(zb (8 -+t + 1),

where the delta function

. 1 a, b
S(6+t+ 1) = ———8 | 2 + ———
( ) Ty s Tes+uj’
can be used to eliminate the infegration over ay,
/s - E
s =63 GeY 3
[ ys
‘OJ?E g
3 : 1
33- 1
- 10 ]
et 3
'T":; b
L) |0.'u' 1
v Mo
~ §
"q 103 N 4
b+ E ¥ -
5
o -36f
o
n
377
10
I i H 1 1

4 6 8 10
PT (Gevicy

(2.36)

(2.37)

(2.38)

Fignre 2.4: The invariant inclusive crossection for prompt photon production in

pp collisions at /s = 63 GeV near 907 in the center of mass [11,12). Solid line

shows our fit to the erosssection,
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The limits for z,, integration are 2, < 2, < 1, with @y, = —u/(9+1). Neglect

all the masses to get

§ = Ly s,
f: = z,t,
1w = Lyt (239)
In CM framc
s = 4%,
1
to= —gsuy T
1 1
u = —'é.':’.}';'i’, (240)
where
2P
Ty = —
’ Vs
T, = tan(6./2). (2.41)

Although one could use a polarized deuterium target to explore the second gluon
asymmetry discussed carlier, the low density of the deuteron makes a significant
exotic gluon component unlikely. A more appealing possibility is Li’, which has
J = 3/2. In the shell model, it consists of a single nucleon in the 1559 level
outside a closed spherical core. This ignores core polarization effects, but is ade-
quate as a first approximation, The single micleon thus carries all the spin of the
nucleus., Our aim is to estimate the influence of the “quadrupole” gluon asym-
metry, AG = GY2 - G2 upon the prompt photon crossection asyrnmetry. This

entails making reasonable models for the parton asymmetries in the Li target.

As a first model assume that the parton asymmetries in Li can be obtained
from the single nucleon by convolution,
Pl@ = [ [ayas ¥ 2ionese-v). @
dmazk /2
In the above, P = q G, or G, and f/¥ is the light-cone probability distribution

for a nucleon with helicity s = :i:% in a nucleus with helicity H, -J < H < J.
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For the gluon asyminetry ;

LG = Gi‘(l) ~ Gi(z)
= / dy dz [f3i(y) - 713(9)] G(2) b(a - y2), (2.43)

where f% 7 = flg/.j‘! + f_:’jl%, etc, Note that only the spin-averaged gluon distri-
bution in & nucleon enters in eq.5; this quantity is better known than the gluon
asymmetry. The convolution model, with the Dirac nature of the nucleon taken
into account properly [2, 3, 5], gives a definite prescription for f% §, ¢te., in terins

of the nuclear wavefunction,
0
-0.1
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Figure 2.5: Prompt. photoproduction asymmetry of ..., = 400 GeV., Solid
curve shows pure convolution model results, dashed curve shows results

including fusion diagrams.

To nurnerically estimate the prompt plioton crossection asymmetry, I have
used the Duke-Owens [6] set 1 of parton densities. As a check of their suitabil-
ity and our tree-level computations, the p-p spin-averaged crossection has been
plotted in Fig. 4. The asymmetry is plotted in Fig. & and 6 for two different
bearn energies, As was stated at the outset, these are not expected to be large -
the contributions come from Fermi motion at the {P?/AM?) level. Binding cffects

cancel out in the differences at this level of approximation,
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Figure 2.6: Same as Fig.3, at Py, = 2000 GeV

Nomn-additive nuclear parton distributions could alter the above results.
Non-additivity can be obtained in numerous ways; here I follow the parton re-
combination model (discussed carlier) developed by Close, Qiu, and Roberts [7],
which is based upon the arguments of Mueller and Qiu [8] and which has been
explored further in [1]. The numerical evaluation of the fusion corrections to the
prompt photo prodiction agymumetry is illustrated in Fig. 5 and 6, from which

the difference relative to pure convolution is apparent.

The evaluation uses as input gluon and quark asymunetries, which requires
a plausible model of nucleon structure [1]. ‘Take the Li7 core density to be ~
exp(—r?/RE) with Iy = 3.8 fm?, and the valence proton to be in the 1Py, state
whose radial part is ~ r exp(—r?/2r2) withrg = 1.44 fin. I have taken Q3 ~ P2/4
although this choice is open to the same criticism as in the original formulation|7}
of the fusion model. The results however, should be qualitatively correct. As can
be seen from figures 5 and 6, the difference in the prompt photon crossections

due to fusion are substantial although the crossections themseives are small.
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2.4 Leptoproduction of Heavy Mesons in Elec-

tron Hadron Collisions

A sceond useful probe of gluon distributions is the leptoproduetion or photopro-

duction of heavy mesons [11]. The dominant (tree level) mechanism for this is

v G — QQ), and is illustrated in Fig. 7.

i

Figure 2.7: Lowest order Feynman diagrams contributing to the process ¢p —

Jip+ X.

The outgoing heavy quarks are assumed to form through soft gluon inter-
actions into the appropriate flavour meson with unit probability independent of

the momenta. The total crossection ean be written as

1 o
a(v'N = cit+ X) = de Gy (2) /t %WWG,E, a)*, (2.44)
where
Lemin = (#2 + Q?) /2myv
b = 3 (54 Q7 ~2m?) = L (5 gm)]
b = —% (54 Q% —2m?) + lig-:c'—')i (3 (5 am?)]'", (2.45)

Here § = (qy 4 q,)* = —Q* + 22Myv > 2, with p,, = 13(81) GeV? for c(h)

production. Also § +f 4+ 4 = 2m? - Q.
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Figure 2.8: Charin production results from NA14' [10]. Solid line shows our fit

to the crossection,

The matrix element for the subproeess vg — g can written as

2 » £l pe + M), » 0 (d,— pe +100)¢
M = 'ﬁ".‘l“(l’v) |:T t— g2 I 2 (p‘_)
= F':;Fii.\f',“,. (246)

Squaring and averaging over photon and gluon polarizations one gets
. 1172 \° 1
A2 = =2 { Z¢
M| 24 (3(9) (t — m?)2(u — m?)?
(= 200 =) — 4B+ QHUE+a)(f - @) —4(5 + Q%)
((t— @) + 206+ 0)%) — 1205 + QB+ 4) — 3(5 + Q4!

+ ﬁ{z([ — @)+ 85+ QH(E+ &) (F — a)?
+ B85+ QH(f - a)* - 23+ QM)
¢ \* )
(_.,-+Q'z) {208 = a)* + 205 + Q")) (2.47)

As a test of the distributions used, a comparison with the data [I11] for spin-
averaged leptoproduction of €¢ mesons from a proton target 1s shown in figure 8.
Using the quadrupole gluon distributions in the convolution and fusion models
discussed earlicr, I have plotted in figure 9 the crossection asymmetries for J/w
production in the two models. Although both the asymmetrics are rather small
as compared to the spin-averaged crossection, it is encouraging to note that they

differ substantially - in fact appreciably more than the pronipt photon asyrormetry.
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Figure 2.9: J/¢ production asymmetry at Q* = —10 GeV2 The solid curve
shows pure convolution mode! results, dashed curve shows results including fusion

diagrams.
2.5 Conclusion

In this chapter a caleulation of the cross section asymetries for two processes is

presented, The processes chosen for this purpose are:

1. Prompt photon production in hadron-nuclews collisions, and

2. Leptoproduction of heavy mesons in electron-nucleus collisions

It is found that the crossection asymmetries for the first process are less than
10%. However the same quantity turns out to be significant in the casc of lepto-
production, i.e., about 30%. This raises the hope that exotic gluon components of
the nuclesar wave function may be eventually measurable in high-flux fixed target

polarization experiments.
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Chapter 3

Decays of Quarkonia

The study of heavy meson decays has been an hmportant part of studies at various
high enorgy physics laboratories around the world. This work was initiated by
the MARK IT and Crystal Ball Collaborations in the early 1980’s. The frst
heavy meson which was studied at these laboratories was the J /. Its discovery
was announced in November 1974 by the MIT-BNL group at Brookhaven and
the SLAC-LBL group at SLAC. [t’s successor, the T was discovercd in 1977 at
Fermilab. Both of these mesons are SU(3), singlet states with JP¢ =177 (35)),

3.1 Introduction

The hadronic decays of the T family of bb rucsons proceed mainly through an in-
termediate state consisting of three gluons, In Fig.1, replacing one of the outgoing
gluons with a photon, one obtains the leading order contribution to the produc-
tion of direct photons, i.e. the photons which do not result from a? decay, ete. In
principle, the spectrum of such photons provides an excellent test of perturbative
quantum chromodynamics (QCD) beeause it yields a large munber of data points
against. which theoretical predictions can be compared, This is in contrast to the
prediction of a decay rate which is a single munber. However, it is well known

[1] that the photon spectrum 28] — + + X, calenlated at leading order 2], is
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too hard when compared against experiment, both in J/¥ and T decays. Such
calculations yield an almost lincarly rising spectrun in 2z = 2E, /M with a sud-
den decrease at z = 1. A next-to-leading order ealenlation by Photiadis [3] swns
leading logs of the type In{l — 2} and yiclds « slight softening. However, the peak
is still too sharp and close to z = 1. An carlier caleulation by Field [4] predicts
a much softer spectruom which fits the relatively recent data [5] rather well. This
calculation uses a parton-shower Monte Carlo approximation whercin the two
gluons recoiling against the direct photon acquire a non-zero invariant mass by
radiating further bremsstrablung gluons, This does not, therefore, qualify it as
an ab-initio perturbative QCD calculation. In ref [2, 3, 4], the non-perturbative
dynamics of the decaying hadron is describoed by a single parameter (0}, the
quark wavefunction at the origin, This leads to the assertion that the ratio of
widths for the decay of quarkonia to prompt photons and hadrons is independent.

of quark dynamics,

Onc can compute the decay rate for *S; — v + X by taking into account the
bound state structure of the decaying quarkonium state, Note that the description
of hadron dynamics by 12(0) alone is correct only if one assumes that @ and
are exactly on-shell and at vest relative to cach other. These assumptions are are
motivated by the fact that heavy quarkonia are weakly bound QQ) composites

and v?/c?

15 a smuall parameter. An improvement on these assumptions requires
introduction of additional hadronic quantities, to be identified within the context
of a systematically nnproved gauge-invariant theory for quarkonium decays. Such
a formalism Las been developed recently (2, 8) and applied to one and two particle
decays. Here, I use the method outlined in ref {2] to the more cornplicated case of
three particles and obtain the photon spectinim in the process T ~» v + X, Thee
total decay rates for T — v+2g and T ~» 3 g are also caleulated. It is found that.
the inclusion of binding and relativistic effects through two additional parameters,
ep/M and V(0)/M3(0), makes the computed spectrum substantially softer
for large z. Although the diserepancy between thiecory and experiment is not

totally resolved, it is considerably reduced.
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Figure 3.1: The decay S, — 3¢

3.2 Formalism

As shown in Fig, 3.1, ¢; arc the d-momenta of outgoing bosons (photons and/or
gluons) and P is the 4-momentum of the decaying quarkonium, In order to write

the decay rate in a simple form, define a set of variables:
1 P, i=1,2.3
Sy =y — I, = 1,44
=3
ard
s o= (P - q)? =M1 —2)
t o= (P —q)? =M1 - )
i = (P — (];;)2 = AJZ(]. - LL';;) f (3.1)
where oy = 2;/M arc the dirnensionless cnergy fractions such that s-+&-4+u = M?
and )+ 2y + g = 2.

The starting point of our approach is that the deecay amplitude for 3.5, —
4+ X is given by the sum of all distinet Feymman diagrams leading from the
initial fo the final state, Fig, 3.1. The first step is to write a given diagram in
the form of a (multipole) loop integral. As an example, consider one of the six

leading order diagrams shown in Fig, 3.2
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Figure 3.2; One of the six leading order diangrams
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Omitting color matrices and coupling constants for brevity, the contribution

of this diagram can be expressed as

IEWIPI R - ddk . .
T = ”f Gy T Seh 4 )7 Sk — sy MB)]. (3.2)

M(k) is the usual, but obviously non-gauge invariant zero-gluon Bethe-Salpeter
amplitude

M) = [ dis O s/ 20 DIIP). (3.3)
In Eqs. 2-3, o is the relative distance between guarks, 2% is the relative momen-
turn, P* = M?, and &, = ¢ — %P. I define the binding energy as ey = 2m — M

in terms of which the free quark propagator is

1 1

Sp(p) = (]5 — 51\/[ — 56“)_1. (34)

Provided all propagators are considerably off-shell, they may be expanded in two
small quantitios e,y/M and E/M -

oSy 1 , O°S

Ak + 8) = S R 4 ok

Silh - 8) = Sils) + K ra + 5k Grears

Using the first term of the above expansion one gots

+ binding energy terms. (3.5)

r spjagfin . d"d'k 1 Iy ¥ i
Ty = =1 [ G TE 0 Skl y S (—sa)y M ()]
= Ty (s AL (0)], (3.6)
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where

S = i Sy} S ()9, (3.7
and
M (0) f Tk M (k) = (O] P) (3.8)
; = M(k) = (Djvy ) .
{ (271')4 vy
Now cxpand Sp to O(k) :
e [ A% LO5(s1) .
Th = —zf i {",”"la —Mék((r‘)y*SF(_.‘,-;,)WM(;;)
3S(—s
1 S (s )y ’”k”-————.’ﬂ)’y"“ﬁd(i\:) : (3.9)
Ok
where
dk LI S
(s — 1 ﬁ(1 :' ‘JTM k
/ Qﬂ)lk M(k) /(27)4( =8 (k)
= 4Ol Py = M™(0) . (3.10)
Therefore
T‘a;’}‘f‘" Tr [G b3 M (K] (3.11)
Finally, on expanding to OQ(k?) :
LHajn : dilk n}j(’) ‘51 (‘51) . 3
Tibats = “"f oy Tr { 2A k %aaf\ﬂ Y4 Se(—sa) v M (k)
OSp(—s83)
i . e 4 LINLY P ag?
Y Sp(s)y " SRR ey M (k)
(')S].. (-‘11) E)SF(—S;;)
J) [0 ~H2 ',ﬂ HIASL (K . .
Once again the integration can be performed easily,
TR fo ks M (k) = 5 5 0l Py = Mo8(0) (3.13)
(27)4 -
and thus
1
T{.‘Ejgi}z]ﬁ;i — T\l |:808.3§h“mzﬂuﬁ/f”(k):l (314)
Addition of all the above contributions yields the expression
F(fél)ﬂzm — Tr[ 0]‘(/]'1!)'[))}1""“2'“3 _{_ (0 D 50 .!/)|p>3«h.uumm
-+ (0 9.0 g |[’) 8“05} L T (3.15)
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—r —tlX —AY
I have defined g = %((‘) — & ) and A##2Es iy the “hard part” which combines
termms from all six Jeading diagrams. It is casy to show that only thiree of the

diagrams need to be evaluated because of the time-reversal symmetry. Thus
J s ‘2?‘-["1”“SF(S[)"f“"!S[f'('—-‘i:s)“fm + n},i‘zsl.‘(sg),},m5'[“(_33),\},#3
*|J‘,ﬁ"“tS{r‘(b‘])"}'“.‘ISF(—SQ)"J“HZI (316)

where 2 accounts for the crossed diagram. The derivative of L#1F263 gets on the

quark propagators and can be siimplified by nsing the Ward identity
8“3[.' - *S;;"‘;’OS;.'. (317)

There are 12 one-glhon diagrams. One of these is depicted in Fig 3.3, which
must be added as corrections to the no-gluon amplitude. However, in this case
one needs to expand the relevant quantity only to first order in k. The amplitude

has the general form:

Tmu'z.ltu L ddk d4k’ ']—‘I' \,[,u k A_I Hﬂl.f—‘:lua k }C’ 3 18
) = WW I('?')p (!)a ()

where M?(k, I') is a generalized B-5 amplitude
M7k, k) = f dhe d e O [h(— 2/ 2) A (22 /]| P €), (3.19)
and HEH2e2 qs the hard part given by

Hywaa g K1Y = =2y Sk — sy + K [2)v"2Sp(k — 55+ K /2)7,
Sp(k — sy ~ KB [2)y" +.-0 (3.20)

AP = %,\“A“P is the gluon field matrix. The dots represent the other 11 diagrams,
whereas the factor 2 again arises from thie application of time reversal symmetry,
The gluon which originates from the blob is part of the QQg Fock-state compo-
nent of the meson. The momentum & is bounded by R~ X & & M, where R is
the meson’s spatial size. Therefore, it is considered soft on the scale of the quark

mass. Again, one may expand the propagators in Hi 23 (k, k') about k = &' = 0

to get
T(,’:]}.{L'z,ug _ Tr[JW”H;‘””“” + A/Ip.aaﬁHLulun:; - A/ff.r?,rxa:] HJJ;UA')M:: + .. ‘], (321)
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Fignre 3.3: (a) One of the 12 one-glion diagriuns, (b) One of the 24 two-gluon

diagrams ,(c) One of the 12 gluon self-coupling diagrams.
where,

MP = (0| AT P, )
M = (04 0" A"\ D, €)
M2 = (0] gapi ONP|D, €). (3.22)

— ]

The derivatives g act ondy upon the quark oporators.

The two soft-ghion contributions to the amplitude are handled similarly but

are more complicated, Typical diagrams are itlustrated in Fig 3.2(b,c) :

T.“ 1 Bajin
(2]

e AV AR
.V Ll ¥ SO S wipaps g, 1o ,
f(i’ﬂ')“(zw)4 (zw)flrDl M (ke KRS R (ke R AT, (3.23)
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where M, (k, &' k") is a generalized B-S amplitude,

M»7(kEEY = /ddrzrd‘;zd‘tu}(:"k"rrf"k"zf:"k”'“’

(OIT[p{—x /2 AP () A (w)ip(2/2)]1 P, €). (3.24)

[ shall not reproduce the remaining steps now as the principle is rather clear.
The real purpose of considering the oune-gluou and two-gluon amplitudes is to
show that the sum of the amplitudes Ty 47\ + T, is a manifestly gange-invariant

expression upto two derivatives.

In the sumn Ty + T + T all ordinary dervivatives combine with gluon fields
to yield covariant derivatives and/or ficld strength tensors (see the appendix 1

for details). Hence

(To + Ty -+ o)1 = Te[(O] | Py 4 ()i D, o] PYO i 1#20a
e s 1 . o i .
+(0|'!,D’f-D(. iy 7’,{,|[)> 58”{)“/:-“”'2“3 + <0|'l'b1’1‘”i'f!)|f)>%({)’AHE”‘JL‘G 4o _]’ (325)

where F9 = 0%AY — 08 A~  iglA% AP] and D, = 8, — igA.. The above is
a surn of terms cach of which ts the product of a soft hadronic matrix clement
and a hard perturbative part. The hard amplitudes 277 (k), H#***(k, &'} and their
derivatives are all evaluated at & = & = £ = 0. Each term in the above equation
is a product of a gauge invariant matrix element characteristic of the decaying

hadron and a simple and caleulable hard part.

To proceed, one can perform a Lorentz and CPT invariant decomposition
of cach of the hadronic matrix clements in Eq 3.25 (sce appendix 2 for details).
This is somewhat complicated and involves a large munber of constants which
characterize the hiadron. Considerable simplification results from choosing the
Coulomb gauge, together witlr the counting rules of Lopage et al.,[9]. The upshot.
of using this analysis is that, in this particular gauge, the gluons contribute at
O(1*) to the reaction *S; — v+ X, and henee can be ignored. Even then there are
too many parameters and one is forced to search for a dynemical theory describing
the essential dynamics of a Q) system. A possible but by no means unique

description is provided by the Bethe-Salpeter equation with an instantaneous
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kernel. This has been conveniontly reviewed by Keung and Muzinich [11] and T use
their expression for B-S amplitude in terins of the non-relativistic wavefunction
¢(p) 1. The momentum space B-S amplitude y(p) satisfies the homogencous

equation,
Ay

(2m)’

which, after making the instantancous approximation K(P,p,p'} = V(7 p') and

x(pm = ?'-Go(Pm)f K(Pp, ) x(p'), (3.26)

rednction to the non-relativistic it vields

() = MYAM — 2EME + - 5.7) d(L — %)(E 4+ m — p-3)y(p]) (3.27)
A AE(E-+m)(p°+ & — E + -w)(p“ - Y E—e) . '

The scalar wavefunction ¢(ip!) is normalized to unity,

[ st -1, (3.28)

and,

E = /i +m? (3.29)
Fourier transtorming y{p) to position space gives (0} (—~2/2)9(z/2)|P). Ou con-
tracting with appropriate gamma matrices, the coefficients can be extracted. Fi-

nally, to @(»?), one has a rather simple result,

- Ml/‘z v‘z 11111/2V‘2¢ P:v
€)= — A e S —
Olppil,e) = — (H '._[2) "’( g M) 7~ "o s (1 M) &

e e
ROW ar‘r t,éf)lp F) - Hgﬂ‘[;/z (j) |: Gag + f'(ﬂwk’f 4‘7#7 }

ﬂ/[}
01 Dudgwir,e = O (o DD (1 P (3.30
’d) alld W 3 - 6 Iw 2 .er[:l ;",’[2 A/[ f/ i )

3.3 Decay Rate

All the ingredients are now in place Lo calenlate the decay T — v42¢. In squaring

the amplitude obtained by substituting Eqs, 29 into Eq. 24, terms involving the

"The analysis of ref |11} is wanting because it dues not properly deal with the issue of gauge-
invariance of the meson state. Further, while the binding energy is taken intu account, the

waveflinction correctivns-which are essentially short-distauce or relativistic effects-are not.
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product of ey and V¢ may be neglected, [ assume the emitted gluons to be
maussless and transverse and that they decay with unit probability into hadrons.
Polarizations of tlie final-state particles are summed and the spin states of the
initial meson are averaged over. Suinming over final-state colors yields 2/3. Also,
one must include a factor of 1/2 for identical gluons. The Lorenty invariant, phase-
space factor for 3 massless particles has a standard expression|12] which is best

expressed in terms of the dimensionless energy fractions @, = 28, /M.

Ignoring radiative radiative corrections for the moment, a tedious calcu-

lation? yields

2 2 2
der __@Czue 16(0)]

dj:l di"g - g 9 2&e M? [nﬂfﬂ('s’t:u) +'T}Hf”(-‘f,t,’lf.) +T};V‘f|,v(3,t,u)],
(3.31)
where ¢, s the quark charge and,
tn vgﬁb

— 1 — = P— . 3.32
Io VAR Y 2¢h ( )

The function f3 provides the standard, leading order result:
MU(s2 12 202 - u? 5% - M2 stuw) (3.33)

5,1 =
fols,tyu) (5 — M2)2(t — M?Y2(u — M?)?

The binding energy and wavefunclion corrections, fp and fipy respectively, are

more complicated:

v 0 o . g
fulstou) = 1‘2[) [-73 tu (5'1 +t* 4 u") +TM* (.s"t‘* + tut + u“o‘")

-+ (32{2 + t4u? & 'u.232) (.93 + or et 15 .s'tu)

+ Mistu (.93 + %+ ‘113) + 29;\/12.92152(1.2] ,

At a s - -
fiv(s, t,u) = 315 (4l stu (s +2% +u') -85 M* (5% + ' +u's?)
. " o . . ] < 205
— 27 (th‘! + 2 'uzs‘)') (s" + 2t F 3t-u>
— 139MPstu (57 4+ 00+ ) — 463 M7 5% (3.34)

1 vsed Mathematicall3], supplemented Ly the HIP package[10], for computation of traces

and sjimplification of algebra
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The denominator D s
D= (s — Mt - M*Y (« — MH*, (3.35)

[ntegrating over the energies of the ontgoing glhions for a fixed photon energy
yields

dl' 2506 ., 0) .
= ; (:;(rufxflgb( ) [0 Fo(2) + i Fu(z) + nw Fw (2)], (3.36)

where 2 = 28, /M and,

=
i

(L4 46 = 26" —€F — 267 1-26(1 4 2 1+ 5¢%) log€}/(1 — &)1 + &%,

Fy = [2 - 166 4 10&* — 486 — 106"  gde” — 2£°

4+ (1 — 36 4+ 14€% = 1066* - 176" — 5167 log €]/2 (1 — €)*(1 + &)Y,
Fiy = [-264 146 — 21087 4- 134€* + 274 — 150&7 — 38¢% - 267

— (27 4- 50 +- 2576 — 29263 + 20561 — 7867 — 416%) log £}/
3(1 =& 1+ &) (3.37)

In the above equations, £ = 1 — z. The integrated decay width is?,

128, Y 2 | ()
Dy, = —9—(7r" — 9)(:;&“(1;?' 15/12{ (l + ¢ — — 1.037n4 + 19. 347;11;) . (3.38)

The F's are plotted in Fig, 3.3.

Radiative corrections of Qo) are of the same order in v?/e? as the other

corrections and were caleulated[10] many years ago at an arbitrary mass scale p,

P
(11—§:zf)togl—-—437 0.77n; . (3.39)

Tily

The paramcters gy and g are independent, of cach other in the present.

treatruent. Note, however, that imposing the condition my = %uu, the result Eq.

$Nate that Eq.22 does not. take into account non-perturbative effects [L6] which are significant
in the part of the phase space where vne of the quark propagators become soft, and where the

gluon vacuum condensate plays a role.
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Figure 3.4: The functions Fy, Iy and Fy plotted as a funetion of #

3.5 of Keung and Mnzinich[10] is recovered. This latter condition is equivalent to
%= V20(0) = 2epp(0), which is the Schradinger equation for the relative motion
of quarks in a potential which vanishes at zero relative separation. It is also
worthy of note that the same condition emerges as a renormelization condition
in the treatment of positronium by Labelle et al[15] (sce their cquations 11 and
12}. However, in our treatment there is no principle which apriori constrains
i1p to bear a fixed relation to ny and therefore hoth will be considered as free

parametors,

The application of Eq 3.38 must be done with caution becanse extraction
of the direct plhioton decay rate from the data requires an extrapolation down to

sruall photon encrgies. But in this cnergy range the prompt photons are heavily
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contaruinated by photons from 7 decays. The 3 gluon rate is a more reliable
quantity on experimental ground, and its theoretical expression is,

5 1 ‘
Fl__—o.'iy - (gﬁ@:) r]""-m‘.-.‘z_q . (340)

3.4 Numerical Work

A numerical estimmate for the correction factors requires the knowledge of 75 and
mw. 1 have chosen ey, = 4.5 which gives oy = —0.048. Also take ag = 0.20 then

7w can be fixed by using the experimentally known numbers[5],

MY —29+v) = 128010 KeV.
DT =1 = 1.34£004 KeV. (3.41)

This analysis gives a range of values for ny. The graphs are plotted in Fig. 3.5
at my = —0.0059. The binding, Fp(z), and wave-function, Fiy(z), correction
terms tend to cancel cach other over part of the » region. The effect of final-state
interaction corrections can be reasonably well estinated{3) provided one stays
away from the end-point z = 1. In Fig. 3.5 comparison is made with the data,
taken from ref.[6], with the prediction of this model appropriately folded with
the experimental photon energy resolution {(assumed to be Gaussian}. Tlie effect
of the binding and wavefunction corrections calculated in this work is sizeable,
and tends to to increase the photon rate in the middle » range and to lower it
for larger ». While this appears to be in the right direction, it would be highly
desirable to hiave more precisc data. Tle experimental data points are taken from
Ref [6]. It should be noted that these values of 1),y and 7y give a correction term
consistent with tlic estimate made in Ref 111]. The shape of the curve depends
on the values of 7y and g, A large negative value of ng and a small value for

my 18 favoured by the experimental data points.

The correction coming from a sum of leading logs of 1 — z has already heen

calculated [3] to all orders in perturbation theory. This correction modifies our
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results somewhat in the large z region. The O(ag) radiative correction in they
decay width is additive and is also inchided here, This correction is smaller than
the @(v?) terms, The inclusion of all these O(v?) corrections causes the decay
spectrum to increase i the region .5 < z < .8 and ranoves the sharp peak in the
large z region. While this appears to be in the right dircection, it wounld be highly

desirable to have more precise data.

3

w Crystal Ball Collab.[5]

25

NI dI'/dz

Figure 3.5: Zeroth order QCD result {dashed line} and our corrected spectrum

{solid line) with s = —.133 and ny = —0.056. The data is taken from Ref [5]



3.5 Conclusion

The approach adopted in this work for caleulating the amplitude for T — -+ X is
to take the sum of all distinet Feynmnan diagrams leading from thie initial quarko-
nium state to the final state, Each diagram is put into the form of a (multipole)
loop integral with a kernel which is a product of a hard part and a soft part. The
hard part is treated with pertirbative QCD, and the soft part is analyzed into
its different components witl the use of Lorentz € and P symmetries. Use of
the QCD equations of motion enables separation of these components according
to their importance in powers of 2. At the last step, a specific commitment to
dynamies is made and the B-§ equation is used to express the components in the
formi of wavefunctions. However, the un-regularized value of V24g(0) is singular
at the origin V*¢(0) ~ M@$(0)/r. As is clear from the uncertainty principle,
the local kinetic energy becomes very large at short distances and thlie expan-
sion in powers of v breaks down. This difficulty was circumvented by imagining
that annihilation takes place in a diffused region of size O(1/m), i.e. #(0) and
V26(0) are quantities renormalized at this scale, and hence should be considered
as adjustable parameters. The minierical investigation shiowed that varying these
parameters within reasonable liuits leads to substantial improvement in the in-
termnediate v reglon but is insufficient. to reproduce the data near z = 1, once
again wnderscoring the importance of final-state interactions between collincar

ghions.
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Chapter 4

Heavy Quark Fragmentation

Functions

Charmonium is possibly one of the simplest strongly bound systems that ex-
ist. Theorctical deseription of its decay and formation involves both perturbative
and non-perturbative aspects of QCD. The large mass of the heavy quarks sets a
mass scale large enough so that perturbative QCD, alongwith a non-relativistic
potential model of the bound state, serve as a natural starting point to study
these processes. Factorisation theorcrus of perturbative QCD separate the pro-
duction process of charmonium in two steps, the production of a parton, a process
which is calculable within perturbative QCD, and the subsequent splitting, called
fragmentation, of that parton into charmonium state plus other partons. Frag-
mentation has proved to be a very useful concept as the fragmentation functions
arc universal, i.e. they are independent of the process responsible for producing
the fragmenting parton. It has also been a major realisation in heavy quarkonium
production that fragmentation processes dominate at sufficiently large transverse

momenta,.

The fragmentation function f(z, ) gives the probability for a parton with
invariant mass less than g to split into the quarkonium state with longitudinal

niomentum fraction z. Until a few years ago, most predictions for fragmentation
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functions were based on the color singlet model, This model assumes that the
¢ pair, which will snbsequently bind into charmonium, is produced in the color
singlet state, [t also assumes that the relative momentum of the quark and the
anti-quark is small compared to m, and hence can be neglected because otherwise

¢ and ¢ are likely to fly apart and never form charmoninm.

The deviations of the predictions of the color singlet model from some recent
data on the production of charmonium forced a reexamination of this model. The
model is clearly incomplete. For one thing, it was assumed that a ce pair produeed
in the color octet state will never bind to form charmonium. This is of course
not truc as a color octet state can always 1make a transition to the color singlet
state by emitting a gluon. The other assumption that tle relativistic corrections,
wlich take into account the relative velocity o of the charm and the anti-chearm,
arc negligible is not true for charmoniwn since the estimated average value of
v? is about 1/3, suggesting that the relativistic corrections of order (v?)" can be

expeeted to be more important than perturbative corrections of order o,

Whereas the role of the color octet model in physical processes such as
Z® decay has been studied [4, 5], the relativistic and binding energy corrections
have so far not been included. In this chapter the relativistic corrections to the
fragmentation functions of a charm quark to decay into 7, and J/y are calculated.
The Virial theorem suggests that the binding cuergy covreetion, arising from the
fact that the mass of charmonium is not the exact surn of the masses of the
constituent quarks, is of the same order of magnitude as the relativistic correction.

So the binding energy correction to the fragmentaton function are also calculated.

The issuc of the absence of gauge invariance in much of the earlier work
on processes involving lieavy quarks has earlier been addressed and resolved in
references [1, 2, 8] where this key property of a gauge theory has been systemat-
ically restored in the study of quarkonia decay. Here the same shall be done for
fragmentation processes. However, it is found that direet introduction of a link

operator offers a quicker route to arriving at gauge-invariant matrix clements.
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The fragmentation function f(z, g) will be caleulated at the seale g =
(3m)2. Switching off the relativistic and binding cnergy corrections, the results
obtained by Braaten ef al. [6] are reporoduced. Altarelli-Parisi cquations are used
to evolve these functions to the scale ¢ = (M, /2)* appropriate for Z° decay. One
can also use the knowledge of the fragmentation functions to find the relativistic
and binding energy corrections te the brancling ratios of Z¢ decay into 7. and

J/w. This is donc in the last seetion.

4.1 Kinematics

I shall use the light cone coordinates in which a four-vector is written as
VE=(VH V7, V),

with

W-Va=WVI'Vo+ vV =V v = vE=2utyT - VE
First define an auxilary vectors n# such that n? = nt = 0. P* is the 4-momentum
of the quarkoniium. Choose a frame in which its 3-momentum is along the z-
dircetion. One can then define P¥ = p# + :%Af[ 25t M Deing the quarkonium mass
and p/* a null vector such that p~ = 0 and p-n = 1. A convenient choice for n#
and p# is

pﬂ = (Ps 0, 61.)1 ' = (03 I/P, ﬁl) : (41)

where P has been adjusted to be the forward momentum P* of the outgoing

charmmonium. A simple calculation yields

Pt = (P, M*2P,0,) = P? = M2,

2 2
"= ((% - UP, ﬁ!i) = 1% = n?, (4.2)



All the remaining dot products can now be ealculatoed

&+ mn? M2 /1
S S L i (L
2(1/2——1)_l 2 (z )’
P n = 1
! (1 1) (43)
n = [(—— .
z

4.2 Formalism

As pointed out carlier, Braaten ct.al., [6] have caleulated the leading order con-
tribution to the charm quark fragmentation function. However the technique
used by them is different from the one used in this work. They started with the
assertion that the fragmentation eontribution to the inclusive decay rate of the
ZY% into charmonium is the term that survives in the limit M /m, — oo. The

differential decay rate for the production of a J/3 of energy E can be written as,
1

dI(Z° — p(E) + X) = Zf dzdD(Z° — i(E/2) + X, 1) fiorp(2, ). (4.4)
~Jo

wliere the sum is over partons of type 7 and z is the longitudinal momentum
fraction of the .J /¢ rclative to the parton. Extraction of the fragmentation func-
tion from the above expression is then made possible by expanding in powers of
m./Mz. The problem with this technique is that it is very difficult to gencralize

it. and caleulate the correction terms.

The starting point of the present work is the definition of fragmentation
function in terms of matrix elements of field operators at light cone separation[3]

i.c.,

0= 33 [T OO PRI EX [FOmI0)]  49)

where z is the momentum fraction of the fragmenting quark carried by guarko-

niun in the forward direction. In lowest order of «,. the inclusive sum over X
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is restricted to ¢ and & First use translational invariance to shift the quark field

operator from An to ():

. (3 . - -
flz) = i— %/\r--(—%e_“\"ze'u AT (A0 [1(0)] PO(PLI(0)0Y] . (4.6)

The suwnmation over X has been replaced with integration over ) the four-
momentum of the undetected outgoing quark. Using the fact that this quark

is on mass-shell, one can write the integration over { as

K] q
[ = [ e -

O [drd - |
B /—(2?)4—(2”)6(!2—rn2). (4.7)

Integration over A yiclds another delta function 4 (% - P—:ﬂi) These two delta
functions allow us to integrate over /' and 7, leaving behind the integration over

[L:

2
£(2) % / 4l Tr [A(0 [(0)] P (PL[(0)| 0}] (4.8)

= Gdn?

where d21, = mdi?,

P+l

4

Figure 4.1: Feynman diagram contributing to the fragmentation of a ¢ quark

into charmoninr

The leading order contribution to the amplitude comes from Fig.4.1, and is given
by,

d%

@Tyl'&(f)(—’i"r")M(k)(~i~f‘) iSp(P4-1) D (k— g +1), (4.9)

o) 0= [



where the color indices have been suppressed!, The Bethe-Salpeter amplitude
M(k) is
: RYEs e —
B f o (Ply(a/2)c o SO 5z ay|0), (4.10)
where the gauge invariance has been ensured by introducing the gauge link op-

pz/2 .
erator ¢ = ¢ J-#/2 M) d‘[11]. The gluon propagator is

quiliy + it 1
D,uy(q) = (_y'uu + B - “) _2 ] (4.11)
¢ n q

in the light-cone gauge.
Since the relative velocity of heavy quarks is much less than the scale set

by their mass, one can expand D, (k — /2 +{) in powers of k, the relative

monentung
O
Dk~ Pl2—-1) = D;,, (k—P/2=Dlx o+ Anak Dk — P2 — ko
+ k"kﬁ a_9 —= Dk~ /2= Do, (4.12)

ko OkA

The above expansion permits us to write the amplitude as follows

i = [ (‘ﬂfgd [ a0 MR} Se(P + 1) D (P2 = 1)

+ A MR Y S (P + DkaDpal P12~ 1)

+ '&([)'Ypﬂ"faﬂ(k)')‘psb'([) + OkakpDpvap(P/2-1)]
(4.13)

whore

D;w,a = aaD,(w;
D,uv.c-f} = acxa_ﬂopu- (414)

The integration over b can be performoed very casily
2} I ) \

4. 41
[ G M0 = [ Gt e s

'The color factor for the leading order dingram turns ont 1o be 16/27




— (PlO)BO)0),

/ (;%)4 ko M(E) = f (;1::9)4 dda %(‘)i,c‘k-,-c([)| d;(J,/Q)gm/_)(—g,/QH())
= 0Pl 2~/ 2i0)-

= (P(0)i Do %(0)]0),

f d%‘ bohy ME) = f L% da 'j-‘cf)ﬁ %aﬂ ff-'k'I(P]"l-f)($/2)‘§"|/_)(_$/2)i0>

(2m)* (2m)*
= i, if)(,(Pi'l,f)(::;/Q)gn/";(—ﬂ:/z)m)l;.-;o
= (P[(0)iDa iD. #(0)10), (4.15)
with
— 1 s—ox —rx . o
D = 3 (O -8 ) — iy A", (4.16)
So finally
(PUHO)|0) = [ a(Dy"M(0)ySu(P + D, (P/2 — 1)
a(DY M)y Se(P + ) Do (/2 = 1)
+ AP MO 0)7Su(P + D) Duas(P/2 =1 |,
(4.17)
where
M) = (Plpgl0),
Me(0) = (PipiD $|0),
X e
M) = %(PW:’D iD ¥|0). (4.18)
The fragmentation function can now be written as
M?E 2 2 2 ,
f(z)= T f([.l 7T, z=11/M (4.19)

where
T = T [/f.S[."y"M"Vﬂ(V-F 'm.)ﬂ;“xlf['y”SF] DDy

o4



VP ne) v A “b;] Dy pDuog

+ 'T‘t[ Sivy™ M "uu )" M7 51| DywDagy
b Ty [ ASey " MAT (VA )y M7 A4S0} DagDhuvps

Ty [ASky* M™ (V4 )7 M~*S1) Dagpo D - (4.20)

The above result should also be multiplied with the color factor for the Feynman
diagram shown in Fig. [1], which turns out to be (averaging over initial and

sumruing over final colors) :

‘ A SYANNNE
cx = 310 (%), (%),
1] 1 1 2
= 3 ‘3hr di
‘zf( “3 ')
116

where the factor 1/3 comes from averaging over initial quark eolors.

To proceed one can performi a Lorentz and CPPT invariant decormposition
of each of the hadronic matrix elements in Eq. 4.18, However the cvaluation
of the hadronic matrix clements for the decay of mesons has been detailed in
Ref. (2, 7, 8]. Their hermitian conjugation and trivial algebraic manipulation
yields the matrix clernents considered in this work. I shall list them in the next
two sections where the corresponding fragmentation functions arc also calenlated.

The details can be found in the appendix 3.

4.3 Fragmentation Function for ¢ — 7,

As outlined in the previous section, one can caleulate the hadronie matrix lements

in Eq. 4.18, for both 7, and J/v. For 7.

MV \% 7 MY VEH(0) P
(/?,/}‘0) 5 15 ( ) (U (1 +- U) . 9 s 1W2 (1 — H)

V%(o

(Pl iD 1/;}0) w‘/* s P,

<
o |



. 1 . V""r/)(ﬁ) B pu[u! P
Wi i) 4 — L Af/2 v wd LT AN 29
(PlyiD iD |0) 6M i G e L+ ) (4.22)

where ¢(0) is the quarkonium wavefunction at the origin. Using these values of

the matrix clements, the fragmentation function?, including the binding energy

correction coming from m = M/2 + ¢;/2 can be computed :

64cx?(3m2) | IR(M)]?

feen (2, 8m) = e A fol2) 4 unfu(z) + nw fiw (2)]
- fg(z, 31”) + 7},;f[;(z, 3!”) + I“,vfuz(z, 37?1) ) (—123)
where
z(1 — 2)?(48 + 82* — 82" + 3:21)
ﬁl(z) = 5 3
(2 - 2)
422 (1 — 2)%(—48 + 48z — 402 + 122" — bz?)
fU(z) = \B )
(2~ z)
i) 82z (1 — 2)%(96 + 144z — 528z% + 2962* — 1022* 4+ 432° — 92%)
i 4 =
¥ 3(2 - 2)F
. der? 2
iz am) =SB IHOF o, (i =0, B, W) (4.24)
Sl M3
and
€1 V"'R(O)
_fn _ v i) 25
W= ™ T RER@O) (4.25)

where I2(0) is the radial wavefunction, related to ¢(0) as ¢(0) = R(0)/4m. In
the absence of relativistic and binding encrgy corrections, the results obtained by
Braaten ot al. [6] are recovered. It is straightforward to obtain the fragmentation

probabitity by integrating Eq. (4.23) over z :

! 4o {R(0)12
]; Az feen (2,3m,) = 27;’ ‘__j% (Fo+9uFn+nwFw), (4.26)

where

I used Mathematica|9], supplemented Ly the HIP package{l0], for computation of traces

and simplifieation of algebra.



773

£y = o2 - 3Tlog?,
5630 232
Fiy o=~ +75 log?.
100304 4136
1/. fr -a . 4.2
f‘n 315 9 l()j..? ( 7)

4.4 Fragmentation Function for ¢ — J/9

In an identical fashion, one can repeat the above caleulation for the fragmentation
of a ¢ quark to a 17~ state, the J/¢. The corresponding matrix elements can
be derived, as before, from the ones cvaluated for the relevant decay process in

ref[8],

_ ) 2,
(P»FWMJ)EO) = %A,II/Z( v* >¢ ;{" ( {;) 6 MI/QZ/I:? ¢ (1_}%) :

(P, e|wiD 0) = Ma,/_),V ¢ .

3 e , |:]m3+ “Jeﬂuaﬂpy Y f')} ,

et s _ a
(i i a0y = g S (- D0 o (142,

6 M? M M
(4.28)
With these values of matrix clements,
: 64 2| R(0)]*
fc—..r/',:-(z) = w—waa@mp)zl—ﬁ(j—g—l— [fo(z) + ‘fmfu(z) + Tnvfw(z)]
= fo(z,3m) + npfu(z,3m) + nw fiv(z,3m), (4.29)
where
z(1 — 2)2(16 — 32z + 7222 — 322 + dz”)
f()(::f) = 6
(2-z)
422(1 — 2)%(48 — 144z + 15222 — 282" + 1321 — 22°)
3z~ 2)
8z(1 — z)*(96 — 272z + 592z — 552z* + 3382* - 1152° + 152%)
3(2 — z)
(4.30)



and all the other symbols have the same meaning as before with the only difference
that M now stands for the mass of J/¢ instead of 3. As before, the evaluation
of the decay rate of 20 to J/¥ would require the total fragmentation probability,

which can be obtained by integrating Eq. (4.29) over z :

! . 6dal |R(0)|? )
/‘: dz f(:—-.f/.p(Z,dﬂlc) = 27?: | 1,5/[3| (F'() + '!)”F,r; + T];VF“/) , (4.31)
wlhere
118¢C
Fy = 133‘) — 07 log 2,
2327
Fy = 5 9G log 2,
5
54308 3728
Fy - log 2. 4.32
W 63 3 ag ( )

4.5 QCD Evolution

The Altarelli-Parisi evolution equations,

; 1
pgfomn () = B[ et @)
can now be used to evolve the fragmentation function evaluated at the scale
o= (3m)? to p = (My/2)% P._.(2) is the Altarelli-Parisi function for the
splitting of a charm quark into another charm quark with longitudinal momentum

fraction z :

4 1422 i
P, = oo - ), .
(=) = Sy ) (4.34)

where the subscripl + has its usual meaning, and

127 _ 2n(C
(33 —2n)t '

ces(Q?) = t = In(Q*/3*)

Multiplying the A-P equation by z*~! and integrating over z from 0 to 1, one

gets
¥ A2 Crn
Eﬂﬁ&zl_lJ : (4.35)

IH“(CJZ) = 7”‘11(623) [ln(cgé/‘,\.ﬂ)

-

o8



where 1, (()?) is the moment of the fragmentation function
M, (Q*) = /d:a; 27 (e, ) (4.36)

and

vn=§{—§+"(714_—1)—22f1-]- (4.37)

i 2 J
The evolution equation is therefore solved easily assmning o polynomial fit. for
the evolved fragmentation function. Using the Altarelli-Parisi equation, I have
evolved the fragmentation function for 7, and J/¢ at the scale p = (3m)* to the

scale pp = (M, /2)?, Fig. (2) and Fig. (3) respectively.

Taking into consideration only the contribution of charm quark and an-
tiquark, the total decay rate for inclusive 7. production at leading order in e,
through 2" decay Is given by :

1
Z® +n.+X) = 2I(Z° m.-)f A2 foven, (2, M ]2), (4.38)
a
where a factor of 2 has been ineluded to incorporate the effect of anti-quark frag-
mentation, It is hinportant to note that at leading order in «,, the fragmentation

iy 1 - . .
probability fﬂ dz form (2, 1) does not cvolve with scale g, and one may write

l -
MZ° - .+ X) = 2INZ° — f:c':)/ dzfiiq {z,3m) (4.39)
{)

4.6 Numerical Work

In order to produce munerical estimation for corrections to fragmentation func-
tions, the values used for various parameters are: «y, = 0,19, m = 1.43 GeV,
\R(0),.[* = 0936 GeV?, [R(0)ul* = 0.978 GeV?, VER/R = —0.7 GeV?,
My =91 GeV, M, = 298 GeV, M,;, = 3.007 GeV. Tle choice of the paramc-
ters a,, |R(0)]?, and V*R/R is discussed in ref]2]. The fragmentation functions

lave heen depicted in Figs, {2,3).



f(z)x10*

One of the first applications of the fraguentation ideas was to charmo-
nia production at LEDP, After calculating thoe lowest order fragmentation func-
tions, Braaten, Cheung and Yuan [6] calculated the branching fraction Br{Z% —
1 J 1)) = TNZ° — n.(J/4) + X)/T(Z® - ¢&). 1 gencralize the above results to

incorporate the binding energy and relativistic corrections as well. For 1.,

Ly(Z2° > n+ X)

LN
Br(z 7e) NZ% — ce)

t l - 0.84’[“3 + 0.951]14: ] y (440)

where I'y ig the color-singlet decay rate in the absence of relativistic and binding
energy corrections. For the values of parameters chosen above, the branching

ratio without and with the eorrections is 2.32 x 1077 and 2.22 x 1074 respectively.

25 e . — —
EEEEE fo(z.3mc) |

f -~ fg(z,3mc) Ne |

2 . fw(2.3mc) I - |
— f(zM/2) |

Figure 4.2: The functions fy, fu & fiv at Q% = (30)? for ¢ — 7., The solid line

shows the complete fragmientation function f at Q% = (M, /2)*

GO



For J/¢,

79 = L) VY
Br(Z[] —_ .]/l’!’f) — Fi](ZI‘(Z”( ]/d})k)“k ‘() [ 1 . 0-‘15”{} + 5.5,,,“‘/ l . (4'41)
—

The binding and relativistic corrections modify the color-singlet branching
ratio of Braaten et al. from 2.22 x 10~ to 1.36 x 107%, an effect of aronnd 38%,
which is not swprising on the grounds that +?/¢* is expected to be around 1/3
for charmonium. Therefore, the @(¢?) corrections scem to aftect the decay of Z°

into J/4 much more than into 1,.

4.7 Conclusion

Relativistic and binding cnergy corrections of ({(¢?) to the fragmentation fune-
tions for chann quark splittiing into . and J/¢ are calenlated. It is shown how
these corrections ean be expressed in terms of variouns bound state matrix ele-
nments of gange-invarinnt quark and gluon operators. In the absence of the said
corrections, these results reduce to the leading order result of Braaten et al.,
[6], as expected. The modified fragmentation functions are used to estimate the
contribution of relativistic and binding energy corrcetions to the corresponding
branching ratios in £ - 2cé decays. Since the average value of v? for charmo-
niun is about /3, one expects the effect of O(v?) terms not to be negligible. It
is found that in case of J /4, these corrections contribute about 38% to the lowest,
order ¢ — ¢ .J/ result, though for 7, this effect does not exceed more than a few

purcent.
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Jhy

15 T fB(ZIBmC)
e fw(Z,Smc) ._'
. f(zMyf2)

f(z)x10*

-1.5

Figure 4.3: The functions fo, fp & fi at Q* = (3m)? for ¢ — J/3¢. The solid

linc shows the complete fragimentation function f at ()? = (M /2)*
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Appendix 1

Gauge Invariance in T Decay

In this scetion I shall shiow that the different terms arising in the expansion of
the amplitudes in T decay can be combined into gauge invariant parts. The

voero-giuon amplitude can be written as

1
leﬂwn:f (dﬁ' Tr{ﬂ,f }l‘”‘)r’-‘d(‘ll)]‘ (1.1)

Expand the hard part in powers of k,

prsk (L) == Z k”' e REUBIA, (1.2)
where
iy e 8 8 ISR 1 ¥
U(;hugin — S Ces o fprada 3(!{:)|k:0- (J..J)
Insert Eq. 2 in Eq. 1 and integrate by parts to get
Ty = Te y | MO URIE, (L.9)
where
1 — iy T ’
M = (05 -iD YIP). (1.5)
Now look at the onc-gluon amplitude
fe1fiz i dk dW . o / Hypapis 4 3
T = Iy Lﬁ/f (k, k') H (k,k )] . (1.6)

(27)1 (27)4

G4



Expand the havd part in powars of &,

| y » .
FP ) = 3 kR kKR, (1)

where
ppana _9 .0 9 9
oy Ay T Ok Shetee G Ok

Insert Eq. 2 in Eq. 1 and integrate by parts over &, & to get

I_[;aul;ul:;p(k) k’)|k-.-k" .0- (18)

iy [T TRERT T TRRRYS 1) e
Tiu“u“ U T&.ZMﬂl Cryiht :V(Inl.{.‘;ﬁ“fglmﬂ“ (19)
n,d
where
KAyt i 'L /T;'—‘"’l ) ._'—'ﬂn. _"}Hl L
M = n‘“(()w:,{) ceid Wi, (¥ A, P). (1.10)

The derivatives id  act only upon the quark operators.

The (wo-gluon amplitude can be writben as

i dW AU dW . b pr st y
Ty :/(%)4(2“)4(%)4% MPE (kB R Py (e B ke )}- (1.11)

In this case one necds to keep ouly the first term in the expansion around & =

B =k =0

The various terms in the expansions above can be combined together by
using the Ward identity, i.c,

d
ap™

Sp(p) = =Sp{p)y Srp)- (1.12)
This gives rise to many useful relations. For example,

V;HH’.HI:!P — _qUI‘l.“'.!I‘E.G (1.13)
allows us to combine the n = 1 term in the Eq. 4 and then = = 0 term in Eq. 9

=Y { — — (Y —Ox

into gauge invariant sum containing (0|¢iD ¢ |), where tD = % (i g —id ) —
igA”. Stmilarly the leading order term in the hard two-ghion amplitude is just
the second order term in the zero-glion amplitude, ete. Also note that the n =
0,1 =1 term in Eq. 9 pives the abelian part of the field strength tensor whereas
the gluon selt interaction diagrams give rise to the non-abelian part, ig{A4,, Ay,

thereby forming the complete non-abelian field strength tensor Fiug.



Appendix 2

Matrix elements for

Any 4 x 4 matrix can be expanded in terms of 16 Divac matrices. For the 177
state the most general decornposition of the matrix clement (0] (—a)w(2)| P, €)

can be written as
(O —z)(@), 1 P 6) = aly; + Doy et eu(3 )i+ do (0" F e (1) (2.1)

The numbers a,b,, -« -, ¢ can be projected out from the above equation.,

a = 1(0115 (=&Y (a)| P e, (2.2)
be = LK) ) Py, (2.3)
G = O )b 26, (2.4)
do = GOH(—)ou () De) (2.5)
e = FOW(2)30)|Pe. (2.6)

From Lorentz invariance, each cntry listed above can be a function of only three
vector quantities, 2, P* and €*, I shall keep terms of ({z?) because only matrix
elements with at most two derivatives are needed.

Lorents invanance restricts a to be

(1(1\/12, Doz, ae) = ap+a Peo-lage w4y +(541’-:1:€-:1:+a5(}_’-:1:)2 erﬁ(tf.-:?:)2
(2.7)

G6



To reduee the pnmmber of free parameters even Guther [ shall use € and P invari-

aree.

C|P, e} = ~1De),

Pl e) = 4 F, ?) (2.8)
Also

Ci{—z/2)C" = 4" (-2/2)C,

Cplaf)C™ = Ci'(2/2),
Ph(—a/2)P" = (2 /2,

Py(z/2)P~ = (i /2), (2.9)

where C s the charge conjugation operator, € = i92+%, such that
C'C=C'C=C'C=-C*=1, (2.10)

Thercfore Cvy,C == ' It is now straightforward to sce that due to € invariance
ag = a3 = aq = a3 = ag = 0, whereas P invariance does not restrict the number of
free parameters. This leaves us with two unknowns such that a = ay P-o+ap e 2.

Siniilarly I can write
by = bz, 4+ ba Dy 4 bacy + by €y 2% PP (2.11)

where the constants ; can once again be written in terms of the scalars used for
the caleulation of a. Similar techniques give answer for one and two derivative

ruatrix elements :

O (—2/2)p(=/2)|Pe) = aid+ar P ¢,
- - : P
(OJUJ(_I'/Q)E 0(! 1.!"(‘1‘/2)”7: F> = (-'F-)j {_’guﬁ + iepuaﬁﬁffﬂﬁfs} B

i

d(rff |:?/+ N P ?{l ) (212)

O1G(—a/2)i D i Daw{2/2)ID,€) =

1
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Let us now write the matrix element with all the indices explicitly shown,
O (=2 /2);(2/2) 1 Py€) g = bre, (3" 4 by Puen (V") (3.3)
On taking the hermitian conjugate,
(0, el (2/2) ([ (=2/2)110) e 0 = brey (V)5 + ba Dl (4997)5, (3.4)
Now

o —2/2) = w,-t(fA—a:/z)(ﬂ,f“)h‘
(Pu(—2 /2 = (M n(~20/2), (3.5)

Therefore T can write
(P, el {1/ 2) (V) iatb(=2/2) |0 o o = brer (7} + ba Puel (V") (3.6)
Next I use the following identitics
("J'U)T = ”."0 = (("IO)T)r’L— = (“fﬂ)zk = ( )I\.l. == (’Yo)ik (3.7
(“fm)f (v ')"u fn) ] (’Y'“).-n‘ == (“f“)r:k(”f““fo)kj (3.8)
()N = Y = QO = )5 = (D ( ) (3.9)

Using these identitics, cancelling ;. from both sides and nmltiplying with 4% one

arrives at
(P e|g(z/2(~2/D 0 |eco=b, &+ & P {3.10)
Irt = similar fashion I derive the followiug
; e - PU P
(Pl 2)i Do (=0 /2)0)]z 0 = ce '—'.ffurf—'fﬁpmﬁﬁv”v :
(P, FI{, dn i OU =/ P )0 = duy {f + — §/' PJ (3.11)

Notice that the above is still not in the right form, What T need s

15, 1
[ = / ((;Tr};dﬂ-{(k) = / (; A) d'a et TPl (/2 (—x/2)|0) (3.12)

69



Now use the anticiimmoutation relation
{(@), ()} = 7"6(F ~ 1) (3.13)

to get.

Yk ko, R PL —x . .
L=-— f M) = ] iyt e (PIOC2/2p(/Dj0), (314

where [ have used the fact that (P|0) = 0. Now change z — ~z and k — —k.

Ak d'k Ly % (DL W 3.
§ = f M) = f Gyt P (P (29(=2(2)10),  (3.19)

Thorefore one can write

M@O) = by ¢ -y P
] [)l'l .
Mr”(()) — et {-gﬁﬂ — 'lq.m_:iﬂ—l”f'( “I'SJ
H

ﬂ/}'ﬁ[;(()) a1

ooy {m‘ ;/‘%] (3.16)
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Appendix 4

Mathematica programs

The three attached programs caleulate different quantities for T decay and charm

quark fragmentation.

e Program 1. Caleulates the amplitide for a 7 /4 to decay into three photons.

Zero derivative + binding energy corrections are calenlated.

Program 2. Takes the no-differentiation amplitude for the T decay, disseets

it, caleulates the squared amplitude, and then caleulates the decay rate.

Program 3. It calculates the interfercnce terin and the decay rate.

Program 4. This program calculates the leading order 7, fragmentation

funetion togethier with the wave function corrections,
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Program 1.

Needs["Hip 'Work "1,

Preparelndex(alf, bet,gam, del, rho, mu, nu, ml,m?2,m3];

SetDotProduct [{K, K, 472}

m=M/2 + eps/2;

Matl= a ({1+31{KI/M)**Uglalfl+Dg{alf[**{(1~-8S1{K)/M})/2 +

b {(1-3L{K]/M)**Dglalf]l+Dglalf)**{l+S1[K]/M))/2 ;

Mat2 = | ll+ LIKL/M) **Dglalf] + Dglalfl**(1-SLIKI/M) )/2;

SF[p_li=(81[pl+m)/ (DPIp,p}-m"2)

al=(1/2)*Q~3*Sgrt(M] *Psi;

al=(1/2)* 3*Hnrr[M|*bpbl.

32—(‘/2)‘Q Sqgrt(M]*Psi*eps;

a all + al;

b (=1/2)* Q~3%sSqrt[M]*Dpsi/3;

a3=[(1/6)*Q"3*Sqrt (M) *M"2*Dpsi;

SethotProduct[{sl,sl, M*wl+M~2/4), (52,52, M w2+M"2/4},
{83,853, M w3+M"2/4)

]

Expand(Matl **Dqgfm2)} **SF[s2)**Dgiml]**St[-53)**Dg[m3] ],
Ca=Expand |[Tr(%]]:
Expand{Macl**Dgiml | **SF[s1]**Dg[m2}**SKF{-s53]*+*Dg[m3] ];
tb=Expand |[Tr[%]];
Expand[Matl=*Dglol]**3SF{s1]**Dg[m3)**SF[-521**“Dg(m2) 1,
tec=Expand [Tr[%]];
qlg2=DP(gl,g2];
glqg3=DPlal,g3];
q2qi=DPla?,ql];
SetlbobProduct ({sl,s82,alg2/2},1{s1,83,q1g3/2},

{51, K, M*wl-M"2/2}, {52, K, M*w2-1

nou

{52,53,92q3/2},
"2/ 483, K, MAw3-Mt2/2) )

K=ql+g?2+33;

sl=gl-K/2;

§2=qg2-K/2;

s3=g3-K/2;

tabce=Expand|[2* (Latrtbtte)]; (¢ "2" accounts for crossed diagrams *)
%/ .eps->0

Th=Expand (1] >>c:\wnmath22\packages\aliljpsideca\TAa;

Dltabc,epsl;

L/ eps—>0;

TDnExpandﬁllh>c:\wnmath22\packages\ali\jpsideca\TDa;

(* THIS PART OF THE PROGRAM CALCULATES THE NEXT TO LEADING ORDER
AMPLITUDE FOR UPSILON TO DECAY INTC 3 PHOTCONS WHICH COMES FROM
DIFFERENTIATING EACH PROPAGATCR TWICE. *}

Clear|gl,q?,q3,s1,352,s3, tabg, K}

Siglmu ,nu J:=1{I1/2)*( Dglmu)**Dg{nu]-Dginul**Dgimu}l )

Acoceff[H ):={1/4)*Tr[H])

Becoeff[H J:=(1/4)*Tr[H**Dg5)

Ccoeff[H ,mu ]:=(1/4}*Tr(H**Dg(mu]]

Docoeffi{H _emu Ji={L/4) *Tr [H**Dg[mu) **Dg5)

Ec0eff{H_ mu_,nu_]:={1/8)*Tr[H**Sig[mu,nu]1

HH[H }:=5Simplify[Contract!| Acoeff|[H)+Dg5*Bcoeff{H|+Ccoeff[H, mu) *hgmu)-+
Deoeff{H, mul*Dgh**Dg(mu}+Ecoeff[H, mu,nu)*Sig[mu,nul, {(mu,nu}] |

(* HH[M] takes an arbifbrary 4x4 matrix and breaks it up
into io gamma matrices. This helps simplify traces. =)

SetDotPreduct [ (K, K,M"2}]

eps=0;

DD=Tongether!{ G{gam,dell-K[gam}*K{dell/M"Z |;

SFPlp_l:=(slipl+m)/(DP{p,p}-m"2)

Dl[p_,alf ]:=—SF[pj**Dglalf]**SF(p]

D2{p ,aif ,ber |:=SF[p]l**Dg(bet]**SF(p]l**Dglalfj**SFpl +
SF(pl**Dglalf] “*5F{p]**“Dglbet]**SF(p)

DFl[p _,rho | :=HH[Dlip, rhol)



DFZ[pk,rho_,lam_]:—HHlﬂz[p,rho,lum}]

SetDotProduct{[sl, sl,~M*wl+M"2/4}, {52,352, -M*w2+M"2/4},
{53,853, Mtwi3+Mn2/4))

ddl=DFl[s1l, gam);

dd2=0F1(s2,gam];

dd3=DF1[-52,del]:

dd4=DF1{~-s83,del];

HH [ddZ**Dgiml] *=dd4];
¥1=Expand|[Contract{%*0D, {gam,del}]];
HE{ddi**Dg[m2]) **dd4] ;
Yl=Expand{Contract [%*DD, {gam,del}]];
HH{dd1l**Dg[m3)**dd3];
Zl=Expand|[Contract [%*DD, {gam,del}]]:

ddl=D¥zZ[sl,gam,del];
dd2=DF2 [s2,gam,dal];
dd3=DF2[-s%, gam, del};
dd4=DF2{-s52,gam,del];

Rl=Expand{Contract|[(1/2)*dd2*DD, {gam,del}|];
RZ2=Expand[Contract{({1/2)*dd3*DD, {gam,del}]]:
Sl=Expand{Contract{(1/2) *ddl*DD,[gam del)li:;
S2=Expand{Contract|(1/2)*dd3*+LD, {gam,del)) ]’
Tl=Expand[Contract[{1/2)*ddl*DD, {gam,del}]]);
TZ=Expand{Contract{(1/2)*dd4*DD, {gam,del}]];
Expand [Mat2**Dgim2] **R1**Dg[ml} **SF[-53] **Dgim3] );

tal=Expand|[Trc[%)];

Expand [Mat2+**Dg[m2]**SF([s2]**Dg[ml] **R2**Dg[m3] ];
taZ=Expand[Tr[%]]:

Expand (Mat2 *Bg[m2)**X1**Dafm3)] );

Expand [Tr (%]}

Contract[%,mul;

ta3=Expand|%];

ta=Expand|[tal+ta2+tal);

Expand[Mat2**Dg(ml]**S1**Dg[m2]**SF[-s3]**Dg{m3) }:
thl=Expand[Tr[%]}];
Expand[Mat2**Dg[ml}**SF[{sl)**Dg{m2)]**52**Dg[m3] ;
th2=Expand [Tr[%3]:

Expand{Mat2**Dg[ml]**Y1**Dg[m3) ]:

Expand[Te[%]];

Contracti%,mul;

th3=gxpand (%) ;

th=Expand (tbl+tbZ+th3]);

Expand [Mat2**Dg[ml ] **T1l**Dg[m3]**SEF{-s2]**Dgim2] ];
tel=Expand {Tr[%]]}:

Expand(Mat2**Dg[ml} **SF[{sl]l**Dg(m31**T2**Dg[mZ] ]};
tecZ2=Expand[Tr[%]];

Expand{Mat2**Dg[ml ) **Z21**Dg{m2] 1|;

Expand[Tr(&]]:

Contract[%,mu);

te3=Expand (%),

tc=Expand[tcl+ic2+tel];

qlgz=DF[agil,gZ};

qlg3=0DP[qgl,g2];

q2g3=DP[q2,q3];

SetDotProduct [{sl,s2,a0192/2},{sl,53,qla3/2),{s?,53,q2q3/2},
[51,K,M*wl-M"2/2),182, K, M*w2-M"3/2), {53, K,M*W3-M"32/21]

tabc=Expand[2* (La+tbh+tc) ], (* "2" accaunts for crossed diagrams *)

K=ql+a2+g3;

sl=gl-¥/2;

sZ=q2-K/2;

s3=q3-K/2;

Expand|tabc]:
TC=Expand{Together!ij]>>c:\wnmath22\packageshalli\jpsideca\TCa;




Program 2.
Needs ["Hip Work ™ ");

(* AmpAD is Lhe leading order J/psi-»3 gamma anplilude.*)
AmpAD=b1‘Gla5f,ml1*G[m2,m3]+b2*G[a1t,m2l‘G[m],mﬁl#hj*G[alf,mS]*Giml,m2]«

Glalf,ml]*| X1213*ql{m2)*qlim3] + X1223*ql[m2]*q2[m3] +
¥1332%ql [m3]*q3(m2) + X1322%ql[m3]*g2[m2] +
X2223*q2{m2)1*q2{m3)] + X1233*gl[m2|*qg3(m3} +
X3233*q3(m2]*q3 [m3] ) A
Glalf,m2])*{ X1321*gl[m3]*q2{ml] + X2123*q2|mll*q2{m3] +
®2331%q2[m3]*q3{ml] + X1113*gli{mll*qgl(m3] +
X3133*q3[ml]*q3[m3] + X1123*gl{ml]*g2[m3] +
¥2133*g2iml]*g3{m3] ) +
Glalf,m3]*{ X1231+ql(m2j*q3(ml] + X2132%qg2[ml]*g3[m2] +
¥3132+¢g3[ml)*q3[m2] + X1112+%gliml]*ql[m2] +
K2122*q2(ml]l*g2[m2] + X2231*qg2{m2]*qgd[ml] +
¥1132*gl(ml)*gq3[m2)] ) +
Giml,m2]* ! ¥lalld*qllalfl*qgl[m3) + XlaZ3*qgl|alf|*g2[m3] +
X13Za*qgl[m3])*q2[alf) + X2a23*g2[alf]*g2(m3) +
¥133a*gl{m3]*qg3ilalf] + X233a*q2{m3]*g3[alf}) +
Xla3ld®*glfalfl*q3im3] + X3233*g3[alf]*g3{m3] +
#2a33*q2lalfi*g3|m3] )} +

Glml,m3]*{ KlalZ2*qllalf]l*ql[m2] + X122a*ql[wm2]*q2lalf] -+
X123a*gl[m21*q3[alf] + X1la32*ql(alf)*gi(m2] +
XZ2aiz*g2lalf]*g3[mZ] + X3a32*q3[alf]*g3d{m2] +
“laz2z2rqgllalf]l*q2[mz] + X2a22*g2lalf)*g2[m2] +
X223a*q2Im2)*qg3falf] ) +

G[m2,m3]*{ XlaZ2l*glialf]l*g2[ml] + X2a2l*¢g2lalf]*g2[ml] +
X213a*q2{mli]*q3|alf] + Xlaldl*qllalf]*g3{ml] +
X2a31¥g2(alf]*q3[ml] + X3a31*g3i[alfj*g3[mi}] +
%lall*qgllalf]*gl[ml] + Xll2a*ql[ml)*q2(alf]
X113a*gl(mll*q3lalf] }:

{* Now square if and perform pel sums: *)

AsgAD=Expand(Contract [AmpAD* AmpAD,

C:A\wnmathZz\packages\alilerror\&sqghaD.ma;

{alf,ml,mz2,m3}]]>>

Expand|Contract [AmpAD*K[alfj,alfl]l];

ApsqgAl=Expand|[ConLract[%*%, {ml, m2,

C:\wnmath22\packages\alilerror\ApsghD.ma;

SDP[lal,ql,0),{g2,q92,0}, {q3,a3,0)]

m3}]]>>

TA=<<C:\wnmath22\packages\alilerror\TA .ma;
TD=<<C:\wnmath22\packages\alilerror\TD.ma;

Exdpand [TA+ens*TD);
T=Expand[%];

Coefficient|[T,Glalf,ml]*G[m2Z,n3}]:
bl=Simplify(%]:
Coefficient[T,Glalf, m21*G[ml,m3]];
ba2=5implify[%};
Coefficientc[T,G{zlf, m3]1*G[ml, m21]};
b3=Simplify{&];

X=Expand[T-bl*G[alf, ml]*G[m2, m3]-b2*Glalt,m2]*G[ml,m3]~-

Yi-Coefficient|[X,Glalf, ml}i;

A1213=Simplify[Coefficient[Y1l,gl[m2]*gqlim3]]
X1223=Simplify[Coefficient[Yl,qlimZ2)*g2 (m3})
X1332=Simplify[Coefficient [Y1l,gl[m3]*g3[m2]]
X132Z2=Simplify[Coefficient{Yl,qlim3]*qg2(m2)]];
K2223= SxmplLEyICDPLtlalent{Yl g2 [m2}*qg2[m3] ]
X1233=Simplify[Coefficient{Yl,ql[m2)*q3[mi]]
23233=5implify[Coefficient[Y¥1l, g3 (m2)*qg3[m31)

Y2=Coefficient(X,Glali,m2]];

1:
|
1

]
1:
1

’
I
’
’
;
;
7

A1321=8Simplify{Coefficient{YZ,ql (m3}*qg2iml}]];

b3*Glalf,m3]1“Glml, m2]1]:



¥2123=Simplify|Coefficient[¥2,q2|ml]*q2{m3])]];
¥2331=3implify[Coefficient[Y2,g2[m3]*g3(ml]]
X1113=Simplify[Coefficient[Y2,ql{ml]*ql{m3]]
X3133=Simplify[Coefficient (Y2, g3 [ml])*g3[m3]]
®1123=8implify[Coefficient{¥2,gliml|*qZ[m3])
¥2133=3implify(Coefficient(YZ,g2[ml[*q3 (3]}

Y3=Coefficient[X,Glalf, m3]];

%1231=Simpiify(Coefficient(¥3,gt{m2{*¢3[ml]
X2132=Simplify(Coefficient (Y3, q2[{ml]*q3[m2]
¥3132=SimplifyiCoefficient{Y3, q3[ml]*ql3[m2]
X1ll2=SimplifylCoefficient{Y3,ql[ml])*ql[m2]
¥2122=Simplify|[Coefficient[Y3,qg2[ml]“qgZ2inmz)
X2231=S5implify(Coefficient (Y3, q2[m2]*q3(ml)
®1132=Simplify[Coefficient{Y3, gl [ml}*g3[m2]

Y4=Coefficient [¥X,G[ml,m2]];

Klal3= Slmpllfy[CoLf71c1ent{Yé,ql[alf]*ql[m3]]],

Xla23=Simplify[Coefficient(¥4,ql{alif]l*g2{m3]]];

X132a=Simplify(Coefficient[Y4d,alm3]*q2laif}]];

X2a23=8implify(Coefficient (Y4, q2{alfl*q2{m3]]};

¥133a=Simplify(Coefficient (Y4, ql[m3]*g3[alfl]};
11
11
113
11:

1;
i
]J’
]I‘
e

z

e e et et

¥233a=3implify[Coefficient(Y4,g2{m3]1*q3(alf]
¥la33=3implify(Coefficient[Y4,gllalf]*q3[m3]
X3ai3=Simplify|[Coafficient{Y4,g3[alf]*g3{m3]
X2a33=Simplify|[Cosfficient[Yd,qZlalf]*q3im3]

Y5=Coeffichent|[X,6[ml,m3]]{

Hlal2=8implifySCoefficient[¥5,qlialf]l*qlim2]]1];
X122a=3implify[Coefficient[¥5,ql[m2]l*q2{alf]]];
¥123da=Simplify[Coefficient[¥5,qlm2i¥g3falf]]]}
Xla32=Simplify{Coefficient{¥5,qllalfl*g3[(m2]]];
X2a3z=5implify|Coefficient[¥5,g2{alf]l*q3[m2]]i:
X3a32=Simplify[Coefficient (Y5,q3{alf|*q3[m2]]]
Xla22=Simplify[Coefficient[Y¥5,qlialf]l*gZ[w2]]];
X2az2= Slmp]lfy[CDefflClent[Y5 g2f{alf)*qg2m2]]1]:
K2Z23a=Simplify[Coeflicient([¥5,g2{m2]*g3{alf]}];

Yo -Coefficient [X,G[m2,m3]]:
¥laz2l=5implify[Coeffiicienti{Y6,ql(alfi]*g2(ml)
XK2221l=5implify(Comfficient[Y6,qg2lalf) g2 [ml]
X213a=Cimplify[Coefficient[Y6, g2[ml]*g3[alf}
Xladl=Simplify[Cosfficient[Ye,ql{alf]*g3(ml]
X2a3l=Simplilify([Ceoefficient (Y%, g2{alf)*g3[ml])
X3a3l=Simplify(Coefficient|Y6,q3{alf)*q3(ml]
Xlall=Simplify([Coefficient [¥6,qlialf]*gl[ml]]
XKll2a=Simplify{Coefficientc[¥Y6,ql (ml]*qg2lalf]}
Xli3a=Simplify|Coefficient|[Y6,qgl[ml]l*qg3{alf)

[ S A P -
PN P W
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b1*Glalf,ml] *G|m2,m3]+p2*G[alf,m2])*G[ml, mi] th3*Glall, m3]*G{ml,m2)+

Glalf,ml]*{ X1213*ql{m2)*gl[m3) + X1223*ql[m2]*g2[m3] +
X1332*'gli(m3)*q3{m2) + ¥1322*gl{m3]*g2[m2] +
X2223*q2{m2)*q2[m3] + X1233*qil[mZ]*qg3[m3] +
®3233*g3(m2)*g3(m3) | +
Glalf,m2]* [ X1321*gl{m3)*g2(ml] + X2123*q2[ml]l*q2[m3] +
X2331*g2(m2i*q3{ml] + X1113*gl[mil]*qgl|m3] +
X3133*g3[ml]*g3{m3] + X1123*gi[mll*q2[m3] +
X2133*q2[ml)*g3[(m3) )} +
Glalf, m37*( ¥1231l*qgl{m2]*g3[(ml) + X2132*q2iml)*g2(m2] +
X3132*qg3[(ml]*q3[m2] + x1112*gl(ml]*gl{m2] +
X2122*%*q2[mll*g2(m2] + X2231*%g2im2]*qg3[ml] +
¥X1132*ql(ml]*g3[m2] ) +
Gml,m2]*({ Xlali*glialfli*glim3] + Xla23+qlialf]*g2[m3] +
AldZa*gl{mi|*qg2(ali] + X2a23*qg2{alf|*q2[m3} +
X133a*gqlm3]*q3(alf] + X233a*qg2{m3|*g3lalf] +
Xla33*gilalfj*g3[m3] + X3a33¢g3lalf]*g3[(m3] +
X2a33*g2{alf)*g3[m3] ; +
G[ml, m3]*{ X1al2*gl[alfl*gl[m2) + K1l2Za*glim2]*g2[alf] +
X123a*qlim2]*q3[alf] + Xla32*qllalf]*q3[m2] +
XzZal32+*g2[alf)*qg3[m2] + X3a32*q3[alf)*gq3[m2] +
X1lazZ2*gl{alfl g2 (m2] + XZaZ2*q2lalfl*g?[m2) +
XKZ23a*g2Z[m2]*q3[alE] ) +

Gim2,m3]*( XiaZl*gl{falfl*g2(ml] + K2a2l+*g2{alf}*gZ[ml} +
XZ2liar*g2[ml]*g3lalfl] + Xla3dl*qgllalil*qg3[(ml] +
K2a3l*gZzlalf)*g3iml] + X3a3l*g3(alf|*g3[(ml] +
Xlall*gllalf]l*gl(ml] + X1l2a*ql[ml]*g2{alf]

X=Expand[%]

Xil3a*qgliml]*q3(alf]

.
¢

(* Have all terms been taken into
between the above and T should be

Expand[x-T]
0

account?
zero. *)

If so the difference

AsqAD=<<c:\wnmath22\AsqAD;
ApsgAD=<<c:\wnmath22\ApsqgAD;

Clear[wl,w2,w3,gl,q2,a3,51,s52,53)

SetDotProduct{{qgl,ql,0},1q2,q2,0}, {g3,q3,0}, (K, K, M2},
{K,ql, M*wl), {K,q2,M*w2}, (K,q3,M*w3}]

sl=Expand{AsqaD];

s2=Expand[Cancel [ApsqAD/M"~2]);

Expand((sl-=2}];

Expand[#]:

%/ .eps™2-=0;

RX=Expand{%];

XX0=Expand[XX/.eps->0]>>C:\wnmath22\packages\alilerror\XX0,ma;
KX1=Expand[D[XX,eps]]>>C:\wnmath22\packages\alilerror\¥X1l.ma;

XKG

XX1 - <<C:\wnmathZ2\packages\alilerror\xXXl.ma;

<<C:\wnmath2z\packages\alilerror\xX9d.ma;

a = al+al;

SetDotProduccltial,q2,q9lg2}, {ql,g3,91g3}, {q92,93,q92q3} ]

qlg2={ (wWl+w2)"2 - w3"2 }/2;
gqlgd={ {wl+wd) "2 ~ w2"2 1/2:
a2gi={ {(w2+w3)"2 - w12 )/2;
wl=M*x1/2;
wa=M*x2/2;

Wi=M-Wl-wW2;
XK3=2~-x1-x2;

Expand[RX0];
XX0=Expand{%*{1/3)“{1/6

Xl=1-5/M"2;

11/, {al”2->0,b"2->0,al*b->0,b*al->0};




K2=1-t/HM"2;

x3=1-u/HM"~2;

a0=(1/2)*0"3*Sqrt (M) *Psiy

al=(1/2y*Q"3*Sqrt[M]*Dpsi;

a2=(1/2)*Q*3*Sqrt (M] *Psi~eps;

b = (-1/2)* Q*3*Sqgrt[M]*Dpsi/3;
ald=(1/6)*Q"3*Sgqre (M) *M"2*Dpsi;

AMA=Together |{Expand[XX0]]>>C:\wnmath22\packages\alilerror\AAR . .ma
Clearia,al,al,a2,b,all:

a=al+al;

Expand[&X1];

¥X1=Expand(2+{1/3)*(1/6)]/.{al->0,b->0j;
XX1=Expand[%*({2*a2/a0));

a0=(1/2)*Q"3*Sgrt [M]*Psi;

al={1l/2V*Q"3*3grt (M) *Dpsi;

a2=(1/2)*Q"3*3grt{M)*Psi*eps;

b= (-1/2)* Q*3*Sqgrt(M]*Dpsi/3;
ad={1/6)*0"3*Sqre[HM)*M " 2*Dpsi;

ARD=Together [XX1]>>C:\wnmath22\packagesialilerror\AAD.ma

Clear{xl,=x2,x3,s,C,u,M]
AAR=<<C:\wnmath22\packages\alilerror\AAA.ma;
BAD=<<C:\wnmath22\packages\alilerror\AAD.ma;

Kl=Factor [Expand|[ARA /. {Dpsi->0,eps->0,M->»5qgrtistt+ul}]l]
Z2 6
{512 Psi @ Sgrt(s + t + u]j

/19 (s + t) (s +u) (£t + u} )
K2=Factor{Expand[D(AAR,Dpsi]/. {Dpsi->0,eps—>»0,M->5qrtis+t+u}l}]
)
{512 Psi @ Sgrtfs + t + u]

3 z2 2 3 i 2
(-3 s Y 4+ s ¢t -3 st -2 s u-7s tu-
Z 3 2 2 2 2 2
7 st u-2 ¢t u+s uw -TFTstu +1r o u -
3 3
3 s u -3t uiy /
2 2 2




[Dpsi->»0,eps->0,HM->8grt(s+t+ul }]]
4 3 304 2 5

Ki=Factor |Expand [ [AAD, eps]/.
2 6 5 2
{256 Psi O

{9 (s + &)

{* The
(1}Has
{2)Has

(s + u) (t + uj 3

above:
been divided by 3 for Jpsi pol. states.
been divided by 6 for 3 identical photons.
(3)Has been multiplied by Q"6*M/4*psi (0)°2 . *)
(* Now get decay rate by dividing by the flux factor,

multiplying by Dlips, and integrating over x1 and x2.
Dlips=M"2/(128*Pi"3);
Flux=2*M;
Tot=Expand| (AAA+BAD) *Dlips/Flux];
T2=Factor{Expand[Dpsi*D[Tot,Dpsi]] |

6

(2 Dosi Psi Q

*)

2
46 x1 + 51 x1

3

(le - 28 x1

+

2

46 x2 + 91 uxl x2

62

3

2

X2 + 51 x2 - 62 xl1 =2

3

28 w2 4+ 14 w1 x2

Pi

3

%1

2

XZ

2

2

%1

2 +

+ 21 x1

2

x2

2




T3=Factor{Expandjeps*D{Tot,eps]] ]

2 6 2 3 4
{eps Psi © (32 x1 - 112 x1 + 160 x1 - 1290 x1 +
5 6
48 w1 - 8B x1 + 32 w2 - 224 x1 %2 +
Z 3 4
472 %1 w2 - 448 w1 x2Z2 + 212 x1 w2 -
5 ) 2 Z
48 %1 %2 4+ 4 x1 %2 = 112 %2 + 472 x1 =2 -
2 2 3 z2 4 2
6684 x1 =2 + 436 =1 %2 -~ 123 x1 =2 +
5 2 3 3
12 x1 =2 + 160 x2 = 448 1 =2 +
2 3 3 3 4 3
436 %1 x2 - 166 x1 x2 + 20 =1 =2 -
4 4 2 4
120 %2+ 212 x1 %2 - 123 %1 =2 +
3 4 5 5 2 5
20 »1 x2 + 48 x2 - 48 x1 x2 + 12 w1 w2 -
o )

8 %2 + 4 =x1 =2 1Y) /

3 3 3 3 3
(9 M P1 =1 x2 (-2 + x1 + %2) )

Tl=Factor[Expand{Tot=T2=-T3] |}

2 6 2 3 4
(2 Psi © (2 - 6 x1 + 7 x1 -4 =1 + x1 - 6 %2 +
2 3 2
13 %1 =2 - 9 x1 x2 + 2 %1 %2 + 7 %2 -
2 2 2 3 3 4
9 x1 %2 + 3 x1 x2 - 4 2 + 2 xl x2 + x2 1))\
2 3 2 2 2
/(9 M PL o ox1 %2 (-2 + w1l + #2) )

dl=Tcgether[Expand[T1*M*2/(Q"6*P5i~2)]);

d2=Together [Expand [T2*M*2/ (0" 6* {Dpsi/Psi) *Psi™2)1];

d3=Together {Expand [T3“M" 2/ {Q"6* (eps/M) *Psi~2)]);

{* D1,D2,D3 are essentially d1,d42,d3 expressed in terms of s,t,u *}
Clear(s, t,u,x1,x2,x3,M

X1=1-5/M"2;

x2=1-t/M~2;

®3=1-u/M"2;




M=Sqgrr |[s+t+u];
D1 = Together [Expand[dl]
4 2 3 3

n
w
T
=
+
(03]
-+

(9 P11 (s + €) (s

Together [Expand{dl-Dl])
0
D2 = Together[Expand[dZ2]

5 4
(-2 (3 3 t©t + 58 ¢t

5 4
35 u+ 18 s

4
19 s £t u + 3 ¢t

2 2 2
39 s ¢t u + 2

(27 PiL (s 4+ &) {5 -

Together [Expand {d2-D2] |

0

]

[R]
R

+u) {t o4 ou)

]

2 3 3
+ 4 s t 4

t u+ 28 5 ¢t

5 4 2
u+ 5 s u

3 2
B st u + 5




D3 = Together|Expand[d3)]

7 02 & 3 5 4 4 5 3 6
(-(s ¢} -8s8 ¢t -22s t -22s5 t -9%s5 € -~
2 7 7 6 2 5] 3
s [ +6s tu+ %9%s ¢ u-34s t u-
4 4 3 5 2 b6 7
74 s t wu - 34 s ©¢ u+9%s L u+o6s85t€c u-
72 6 2 5 2 2 4 3 2
s u +9s tu -24s5 ¢ u - 144 3 £ u -~
3 4 2 2 5 2 6 2 7 2
144 5 £t uwu -24s ¢ u +%st u -t u -
6 3 5 3 4 2 3
93 uw - 34 s tu - 144 s L u -
3 3 3 2 4 3 5 3
246 5 tr 1w - 144 5 © u - 34 5t u -
& 3 5 4 4 4 3 2 4
9 ¢t uw - 225 uwu -7 35 L u ~-144 5 € u -
2 3 4 4 4 5 4 4 5
14¢ = ¢t uwu - 74 st uw -22t u -22s8 u -
3 5 2 2 5 3 5 4 5
34 = tu -24s t u - 34 st u =22t u -
3 6 2 ) 2 6 3 6
s u +9s tu +%st u -8t u -
2 7 7 2 7
s u + 6 s tu -t ul/
3 3 3 3
{9 pPi (s + ) {s + u) {(C + u) )
Together (Expand (d2-D2]]

0

Clear[s, t,u,xl,x2,x3,M]

DEN= [g=M"2) "3+ [£-M"2)*3* (u-M"2}"3;

D3={2*M"~4/ (9*P1~3) ) *NUM/ {2*DEN) ;

Clear(s, t,u,xl,x2,4x3,M]

Integrate[dl, {x2,1-x1,1}1};

spectl=Together|Expand([%]]

integl=NIntegrate[spectl, [x1,0,1}}:

Spectlixl_]:1{2*(—16*xl A+ 32*x172 - 261”3 + 11*x1°4 -

2*x1"5 - 16*Logfl - x1] + 40*xl*Logf{l - x1] -

34*x172*Log[l - =x1] + 10*x1"3*Log(l - =x11))/

(I*PLI73* (=2 + x1)"3*x1"2)




Integrate[d2, {x2,1-x1,1}];
spectZ=Together [Expand[?]]
integ2=NIntagrate([spect2, {x1,0,1});
spect2(xl Ji=(2*{-120*x1 + 236*x1"2 - 186*x1"~3 +
T7%1%4 - 14*x175 - 120*Log[l - x1] +
272*x1*Log[l - x1] - 226*x1"2*Log[l - x1] +
68*w173*Log [l - x1§)}y/{27*Pi"3* (-2 + x1)"3*x1"2)
Integrate{d3, {x2,1-x1,1}]};
specti=Together [Expand[%}]])
integi=NIntegrate[spect3, (x1,0,1}};

spect3[x1 J:=(2*(-128*x1 + 416*x1"2 - 512*x1"3 +
280%x1%4 - 52+*x1"5 -~ 2*x1"6 — 128*Log[l - x1] +
480*x1*Log[l - xl] = 712*x1"2%Log[l - x1] +
548*x1"3*Log{l - x1) - 238*x1~4*Log[l - x1] +
51*x1~5*Log(l - =%1]))/(9*Pi"3*(~2 + x1)"4*x1"3)
xl=1-5;
Simplify({spectl}
3 4 5
(2 {1 +45 -28 -8 -25 + 25 Log(8] +

2 3
4 5 LogiS? + 10 5 Log(S)1))y /

3 2 3
(9 Pi (-1 + &) {1 + 8)
Simplify{spect?]

3 4 5
(2 7 + 325 -188 - 785 - 145 + 6 Log[S] +
2 3
24 5 Logl[S] + 22 8 Log[sS} + 68 5 Log(S1}y)y /
3 2 3
{27 P1 (-1 + S) {1 + 3) )
Simplify[spect3]
2 3 4 5 6
(2 {2 - 168 + 108 - 485 - 108 + 64 S =25 +
2

Log[S] - 3 S Log[S] + 14 § Logl[S] -

3 4 5
106 & Log[S] + 17 S Logl[S] - S1 S LogiS])) /
3 4 3
{9 P1 (-1 - 8) (1 - 5) )




WIDTH=Q"6*Psi™2/M"2* (

integl + integ2=* (Dpsi/Psi)
integld*{eps/M) )

0.00642662 eps  0.0110489 Dpsi
“{0.00311623 - =—=——mmm—m—m—o o —moo o )

M

Psi

+




Program 3.
Needs ["Hip ' Work "]

SethDotProduct([{ql,ql,0),{a2,q2,0}, {g3,q3, 0}, (K, K, 1" 2},
{qqusz/2}l‘qqu3it/2}: (q?-fq315/2}]

PreparsIndex[alf,bet,gam,del, rho, my, nu,ml,m2, m3);

m=M/2;

K=ql+g2+q3;

AAC1=b1*G[alf,ml]1*Gim2, m3]+b2*G{alf, m2}*G[ml,m3)+b3*G{alf, m3i1*G(ml, m2]+
Glalf,ml|* [ ¥1213*gqi[(m2]*ql(m3] + X1223*gl(m2}*g2[m3] +
X1332*gl{m3j*g3{m2) + X1322*ali{m3]*gZ(m2] +
®1233*q1l Im2}*q3im3] + X3233*¢3[m2)*g3[m3} +
X2223*%q2{m2)*q2{m31) +

Glalf,m2)*{ X1113*qlml)*gl[m3} + X1321*glim3]*qgZ2{ml] +
X1123*gl(ml)*g2[m3) + X2123*q2[ml]|*q2(m3)
X2331%g2 |m3)*q3(ml] + X21334g2[ml]*g3[(m3] +
“3133*q3|[ml)*g3{m3])+

+

Glalf,mai*( X1112*gliml]*gl(m2] + X2122+*g2[ml]*qZ[m2]
®1231*%gl (m2)*g3[(ml} + X2231*a2{m2]*g3[ml)
£X1132%qli[mi]*g3[m2] + X2132*qZ(ml]*g3[m2] +
¥3132*q3(m1] *q3(m2]) :

+ o+

AAO2Z = G[ml,m2]*(X1lal3*qgl{alf)l*glim3)+X1a23*gllalf)*g2[m3}+X132a*ql[m3]
*g2lalf)+

X2a23*g2(alf] g2 [m3] + X133a*gl(m3}*q3lalf] + X233a*g2{m3]*g3[alf]+
Xladd*gllalf] g3 |m3d) + XZali3*q2lalf]*q3[mm3] + X3a33*g3(alf]*g3[m3])+
Glml,m3]*(X1lal2*ql|alf]l*ql (m2]+X122a*ql(m2] *g2{alf]+X123a*ql [m2] *
g3lalf) + Xla32+*glialfl*g3[m2] + ¥2a32*g2lalfl*g3im2] +
X3al32*gilalf]*g3(m2]+ Xla22*gllalf]*q2(m2] +XZaz22*q2[alfl*q2{m2]+
X223a*gZ2{m2]*q3{alf])+

GIm2,m3l*(Xlall*gl[alf}*ql[mll+X112a*qliml]*q2 alf)+Xla2l*qllalf]*

g2 [ml]+X2a2l*q2lalfl*g2[ml]+X113a*qgl(mli*qg3{alf)+X21l3a*g2[ml)*gl3{alf]+
Xla3l*gl{alfl*g3[(ml] + K2a3l*g2(alf}*q3(ml] +X3a3l*g3[alf]*q3[ml] };

ARO-AROL1+RAQ2;

AAZ=al*CGlalf, ml]*G(m2,m3}+a2*Glalf, m2]*CG[(ml, m3]+a3*G(alf, m3]1*G(ml,m2]+

Glalf,ml)*{ Z1213*gi[m2]*gl{m3) + 21223*qlm2]*q2[m3] +
21332+ql (m31*q3(m2] + 21322*ql(m3]*g2[m2] + 22223*q2[m2]*q2(m3] +
Z2332%g2 [m3]*q3[m2) + Z1233*gl[m2]*g3{m3} + Z3233*q3[m2]*g3[m3] +
22233 g2 {m2]*g3[m3) ) +

Glalf,mZi*( Z1321*gl{m3)*q2(ml) + Z2123*g2[ml]*g2(m3] +
Z2331*q2{m3]1*g3{ml}] + Z1113*gliml]*gl(m3] + Z21123*ql[ml]*qg2[m3] +
Z1321*%ql (m3]*gq3[(ml] + Z2133*g2[mli*g3(m3] + Z3133*q3[(mlj*q3{m3) +
21133*ql [ml]*g3{m3] ) +

Glalf,m3]*( 21231*gl(m2]*qg3[ml} + Z2132*g2iml]*g3[m2] +
Z3132*q2 {ml]*gq3{m2) + Z1112*glimll*gl [(m2) + Z1221*gl[m2]*g2[ml] +
72122%*q2[m1]*q2 [m2] + 22231*q2[m2]*q3[ml] + Z1132*ql(ml}*q3{m2] +
21122*qliml] *g2{m2] );
AR2= Glml, m2]*({ Zlal3*qllalf]l*gl[m3] + Zla23*ql(alf)*q2[m3] +
Z132a*ql[m3)*qZ2{alf] + Z2a23*g2lalfl*g2[m3] + Z2133a*gl[m3]*g3[alf] +
Z233a*qg2[m3]*g3[alf]l + Zla33*qgllalf]l*g3(m3] + Z2a33*q2lalf]l*g3[m3) +
Z3a33*q3[alf]*g3[m3} ) +

Giml,m3]*{ 2zlal2*qllalf]*qgllm2] + Z122a*gl[m2]*g2(alf] +
2123a*aql[mZ]*g3[alf] + Zla32*gllalf)*qg3(m2] Z2a32+*qg2lalfl*g3[(m2] +
Z3a3zZ*qidlalil*qiim2] + Zla22*qllalfj*g2(m2] + 2223a*gq2[m2]*q3[alf] +
Z2az22%qzZlalf]l*qg2{m2) ) +

Gm2,m3]*{ Zla2l*gl(alf]*qg2[ml] + Z2a2l1*g?lalfj*g2{ml] +
z213a*g2[ml)*g3[alf] + Zla3l*qllalfi*g3{ml] Z2a31*%g2[alf]*g3[ml] +
Z3a3l*qg3lalf]l*g2(ml] + Z112a*qgliml}*g2lalf] + Z113a*ql(ml]*q3lalf] +
Zlall*qglalfl*gllmly )

Expand [BRO1*Kialf]);
bO=Contract(?,alf]>>cr\wnmath22\packages\alilipsideca\bll

+

+



Expand [RA0Z*K]alt] ];
bO=Contract[%,alfl»>c:\wnmathZ2\packages\alil\ipsideca\b02

Expand [AR2*K{alfl]l;
c?=Contract[%,alf]>>c:\wnmath22\packagesialilipsidecal\c2

Expand [RBZ*K[alf] ],
d?=Contract[?,alf]>>c:\wnmath22\packages\ali\ipsideca\dz

{* ApsgACl = BpsghCatApsgACb *)

pll=—<<c:\wnmath22\packages\ali\jpsideca\b0il;
c2=<<c:\wnmath22\packageshaliljpsidecal\c?;

Expand[2*bGi*c2]; (* "2" because it's an interference term *)
Contract!®,ml};

Contract{&,m2];

Contract{%,m3];

i>>c:\wnmath22\packageshalilerror\ApsgdCa.ma;

pl2=<<c:\wnmath22\packagesialilipsideca\b02;
c2=<<c:\wnmath22\packages\aliljpsidecalc2;

Expand[2*b02%c2]; (* 2" because it's an interference term *)
Contract(%,ml];

Contract [%,m2];

Contract [%,m3];

irr»oi\wnmath22\packageshaliNerror\ApsqgACDb.ma;

(* ApsghC2 = ApsgACc+ApsgACd *)
pll=<<c:\wnmatn22\packages\alilipsideca\b0l;
dZ=<<c:\wnmath22\packageslaliljpsideca\d2;

Expand[2¢D01*d2); (* "2" becausc it's an interference term *)
Contract{%,ml];

Centract[®, {m2Z,m3}1>>c:\wnmath22\packages\alilecrror\ApsqACc.ma;
b02=<<c:\wnmath2Z\packages\ali\ipsideca\b02;
dZ=<<c:\wnmath2Z\packagesl\alil\ijpsidecal\dZ;

Expand [2*b02*d2); (* "2" because it's an interference term *)
Contracb[%,ml);

Contract[%, (m2,m3}];

w>>cr \wamatbh22\packages\al i\error\ApsqghCd.ma;

{* "2" becauss 1t's an interference term *)
Cl = Contractl|Expand{2*AR0*RA2 ],{alf,ml,m2,m3}

1:
C2 = Contract(Expand [2*AA0*AB2 ], {alf,ml,m2,m3}];
Cl+C2>»>c:\wnmath22\packagestali\jpsideca\RsqghAC;

<<c:\wnmath22\packages\alilerror\TA.ma;

T=Expand(§];

a = al0;

(*b and al terms are being multiplied by a3 which contains Dpsi

in it *)

b = 0; (*coefficient of Dpsift)

al = 0; (*ceocefficient of Dpsi*)

Cogetficient[T,G{alf, m1]*G{m2,m3]];

bi=3implify[%];

Coefficient|(T,Glalf, m2)*G[ml, m3])];

b2=Simplify[4];

Coefficient(T,G[lalf, m3]*G{ml,mz2]];

b3=5implify(%];

X=Expand|[T-bl*G(alf, ml]+*G{m2,m3)~-bp2*G(alf, m2]*G[ml, m3)]—-
b3*Glalf, m31*G[ml, m2]];




Yi=Ceoefficient(X,Glalf,mll};
K1213=SimplifylCoefficient{¥l,ql{m2]*ql(mJ]
¥1223=Simplify|Coefficient(¥Y1l,gl[m2])*q2(m3)
®%1332=Simplify|Coefficient[¥1l,ql[m3]*g3(mZ]
X1322=Simplifylcoefficient{Y1l,qlm3]*g2im2]
X2223=8Simplify(Coefficient{¥1l,g2{m2]*q2{m3]
X1233=Simplify[Coefficient (Y1, ql{mZ])*q3im3]
X3233=Simplify(Coefficient(Y1l,ag3[m2]*q3[m3]

Y2=Coefficient(X,Glalf, m2]]});

®¥1113=Simplify[Coefficient[¥Y2,ql{ml]*ql{m3]
X1321=Simplify{Coefficient[Y2,ql [m3]*q2{ml)
X1123=8Simplify[Coefficient([¥2,qgl[ml]*q2{m3]
X2123= S1mpllfy[Coeff1cxent[Y2,q2[ml]*q2[m31
X2331=Simplify|Coefficient(Y2,g2[m3)*qg31ml]
¥2133=Simplify(Coefficient(¥2,g2iml])*q3(m3]
¥3133=Simplify(Coefficient(¥2,q3[ml)*g3{m3]

Y3=Coefficient[X,G[alf,m3]];

X1112=Simplify{Coefficient{¥3,qlml]l*gl[mZ]]
¥2122=Simplify|{Coefficient (Y3, q2[(mlj*qg2[m2]
%¥1231=3Simplify|Coefficient{¥3,gqlim2]*q3[ml}
X2231=Simplify[Coefficient(¥3,q2[m2]*g3[ml)
X1132=Simplify(Coefficient[Y¥3,gl(ml]*g3[m2]
X2132=Simplify(Coefficient [Y3,q2[ml]*g3(m2)
%3132-Simplify{Coefficient{¥3,g3[(mli*g3[m2]

Y4=Coefficient |[X,G[ml, m2]];

X1al3=5implify|Coefficient[Y4,ql{alf]*qgl|m3]
Xla23=8implify[Coefficient(Y4,gl{alf]*qZ2[m3
X1l3za=Simplify([Coefficient{Y4,ql(m3)*g2lalt
X2223=Simplify[Coefficient(Y4,q2[alf]l*g2[m3
X133a=Simplify[Coefficient{¥Y4,gl[m3]*qg3{alf
X233a=Simplify([Coefficient{¥Y4,g2[m3]*g3{alf
X1a33=Simplify[Coefficient(Y4,qllalf)"g3[m3
X2alild=Simplify[Ceefficient(Y4,q2lalfl*g3{m3
X3a33=Simplify[Coefficient([¥Y4,q3[alf] g3 (m3

Y5=Coefficient[X,G[ml, m3}];

Xlal2=5implify[Coefficient{¥5,gqllalf]*gl(m2
X122a=Simplify[Coefficient[Y5,ql(m2])*g2[alf
X1l23a=Simplify[Coefficient[¥5,ql(m2])*g3[aif
X1a32=Simplify(Coefficient{¥5,qlialf]*g3(m?2
K2a32=Simplify[Coefficient|Y5,q2{alf]l*q3im2
X3a32=Simplify{Coefficient[¥5,g3[alf)*g3(m2
X1a22=Simplify(Coefficient{Y5,gqllalf)*g2im2
¥X2a22=8implify[Coefficient (Y5, g2[alf]*g2{m2
X223a=5implify[Coefficient[Y5,g2[m2]*g3[alf

Yé=Coefficient[X,G[m2,m3]];

Xlall=3implify|{Coefficient([Y6,qllalfl*gl[ml
Xllda=Simplify(Coefficient[Y6, gl (ml]*qg2[alf
XlaZl=8implify(Coefficlent{¥6,ql{alf]l*gZ[ml
Xza2l=8implify[Coefficient{Y6,gZ2(alf]*qg2(ml
X112a=Simplify[Coafficient[Y6,qliml]*g3{alf
X213a=5inplify(Coefficient{¥Y6,gq2iml]*g3(alf
Xla3i=Simplify[Coefficient([Y6,ql{alfl*qg3[ml
XZ2al3l=Simplify(Ceefficient([Y6,gq2[alf]l*q3[ml
X3a31=Simplify|Coefficient{Y6, g3{alf]l*g3[ml
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bl*Glalf, ml}*G|wm2,m3]+b2*Glall,mZ]*Giml, m3]+b3*Glalf, m3]*G(ml, m2)+

Glalf,ml]*{ ¥1213*ql[m2]*ql(m3) + X1223*gl(m2)*q2[m3] +
X1332¢ql [(m3]*g3im2] + X132Z¥ql[(m3]*qg2{m2] +
X1233*gl(m2]*q3 [m3] + X3233*q3[(m2)*q3(m3] +
R2223*g2Im2)*g2im3) )+

Glalf,m21*{ X1i113*%*gl{ml)*ql[m3} + X1321+:gl[m3]*qg2[ml] +
X1123*gql{ml)*qZ2{m3] + X2123+*g2[ml)*qg2{m3] +
X2331%q2[m3]*g3{ml] + X2133*q2(ml]*g3{m3] +
¥3133*g3ml]*q3[m3))+

Glalf,m3)*({ ¥ill2*ql ml]*gql(m2] + X2122*g2(ml)*q2[m2] +
N1231*glim2)*g3{ml)] + X2231*g2[m2]+*q3[ml)] +
¥1132*%glml]*g3[m2} + X21232*g2[ml]*g3(m2] +
X3132*q3[ml]*g3(n2})+

Glml, m2}* [X1aild3*ql{alfl*qglim3]+xX1la23*ql{alf]l*q2[(m3]+X132a*ql (m3]*

g2lalfl+X2a23*q2lalfl*g2[m3) + X133a*qglimid)*g3lalf] + X233a*qg2(m3]~

g3lalf]+

Xlad33*glfalf]*a3[(m3] + X2a33rgzfalf)*q3{m3] + X3aldi*g3[alf)*q3[m3])+

Glml, m3]*(XKial2*gl alf)l*ql m2]+X122a*gl{m2]*g2lalf]+X123a*ql[m2]}

g3dlalf] +

Xla32*allalfl*q3(m2)] + X2ald2*q2(alfl*g3[m2) + X3a32*g3{alfl*gqli(m2]+

X1a22*gljalfl*qgZ[m2)] +X2a22*g2(alf)*g2 [m2]+X223a*g2[(m2)*q3[alf])+

Gm2,m3l*{Xlall*gllalfl*ql{ml)+X1l2a*ql{ml]*qZ(alf]}+XlaZ2l*ql{alf]*

q2{ml}+

XZ2a2l*g2[alfl*g2iml}+X113a*glml)*g3(alf}+¥213a*g2(ml]l*g3[alf]+

¥la3l*gl[alfl*qg3(ml}+X2a3l*g2{alf)*q3(ml)+xX3al3l*g3(alf]l*qg3[ml] };

X=Expand|[%-T]
0

<<c;\wnmath22\packages\alilerror\TC.ma;
T=Expand{#];

Coefficient[T,G[alf,ml)*Gm2,m3]1;
al=simplify[%];
Coefficient[T,Glalf, m2]*G[{ml, m3)];
a2=3Simplify(%];
Coefficient{?l,G{alf, m3]1*G(ml,m2]];
ad=Simplifylid];

X=Expand[T-al*Glalf,ml]*G[m2, m3]-a2*Glalf, mz2]*G{ml, m3]-
ald*Glalf, m31*GIml, m2]];

Yl=Coefficient[X,Glalf,ml]}];
Z1213=5implify[Coefficient|{Yl,glim2]*ql(m31]]);
21223=3implify{Coefficient[Yl,qlm2]*q2[m3]));
21332=Simplify{Coefficient[Yl,gql(m3]1*q3[(m2j1];
Z1322=Simplify{Coefficient[Yl,ql{m2)*q2im2]1];
22223=5implify[Coefficient [Y1l,g2{m2])*q2{m3}]];
Z22332=8implify([Coefficient(Yl,g2[m3]*q3[m2]}]1];
Z1233=8implify(Coefficient(Yl,ql[m2]*q3{m3}]];
Z3233=Simplify[Coefficient(Yl, g3 [m2]1*q3{m3}]]):
Z1332=Simplify(Coefficient[Yl, ql[m31*q3[m2l]]
22233=51mplify|Coefficient[Yl,g2(m2]*g3[(m31]]};

Y2=Coefficient (X,G{alf,m2]];

Z1321=35implify(Coefficient (Y2, ql{m3]*g2iml
22123=Simplify[Ceoefficient([¥2,g2[ml)*q2(m3
Z2331=Simplify(Ceefficient(Y2,q2m3) *q3 [ml
Z21113=SimplifyfCoefficient{Y2,ql(ml]*ql[m3
Z1123=Simplify(Coefficient|{Y2,glml]*g2[m3
Z1331=Simplify([Coefficient [Y2,gql[m3]*g3 [ml
22133=Simplify(Cosfficient([Y2,q2{ml)*g3[m3
Z3133=Simplify|{Coafficient{Y2,q3 [ml]*g3[m3
Z1133=Simplify{Coefficient([Y2,qliml]}*g3{m3]

Y3=Coefficient|[X,Glalf,m3]];
Z1231=5implify[Coefficient (Y3, ql(m2]*g3Imli)};
22132=Simplify[Coefficient[Y3,q2iml]*g3({m2]])}:

M Mu me ma %a e Ma me wa ma

[ L A e O

.




Z3132=3inplify[Coefficient[Y¥3,q3[mi]*q3[m2]]];
Z1112=3implify[Coefficient (Y3,gl(ml]*ql[m2]1];
z122)=simplify{Coefficient[Y3,qlim2]*q2{ml}]];
72122=3implify(Coeflficient(Y3,q2{mll* g2{m2]}]):
Z2231=Simplify([Coefficient{¥3,q2[m2)*q3[mll]];
Z1132=Simplify|Coefficient[Y3,ql[ml)*g3(m2]]]);
Z1122=Simplify|Coefficient|[Y3,ql{mli*q2im2]]1Y;

Yd=Coefficient[¥X,G(ml,m2]]);

Zlal3=Simplify[Coefficient[Y4d,gllalf)*qlim3]
Zla23=51mplify[CceEficient{Yé,ql[alf] qz(m3)
Z13Za=Sinplify(CoelfficienciY4,glim3)*q2lalf]
Z2a23=Simplify([Coefficient[Y4,q2(alf)*q2{m3)
Z133a=SimplifyiCoefficient([Y4,gl{m3])*q3[alf]
2233a=Simplify([Coefficient{Y4,g2[m3])*q3[alfl])
Zla33=Simplify{Corfficient|[Y4,gl[alf)*qg3]im3)
Z2a33=3implify]Coefficient[Y4,g2(alf]l*q3{m3]
23233=Simplify{Coefficient[Y4,q3{alfj*q3|m3]

Yo=Coefficient(X,G{ml, m31);

Zlal2=2impli Ey{CoefflCLent|fa qgllalfj*ql[m2)1];

Z122a=8implify[Coefficient[¥5, gl m2]*q21a1f}]),

z123a= Slmp‘lfy[CoefilLlent[YB gl [m2]*qg3{alf]]]:

ZlaldZ=Sinplify|Coefficient([¥5,ql(alf]*g3[m2]]};

Z2a32=Simplify[Coefficient{Y5,q2{alfl*q3[m211};
111
113
111:
1171

11:
11
1t
13
143::
13:
13
11:
11

Ziadz=5implify{Coefficient[¥5,g3[alf]*q3[m2
21iaZ2=8implify{Coefficient[Y¥5,qllalf]*q2[m2
Z223a=Simplify[Coefficient (Y5, q2{m2]*q3[alf
22a22=Simplify[Coefficient([¥5,q2{alf)*g2(m2




<<ci;\wnmath?22\packageslaliVipsideca\BpsqAl;

ApsgAC=Together {3/M"2]>>c:\wnmath22\packagesiali\jpsideca\ApsghAC2.ma;
AsqAC= <<c:\wnmath22\packagesialiljpsidecal\AsgACl.ma;
ApsqAC=<<c:\wnmath22\packages\aliljpsideca\ApsqACZ.ma;
six=Expand[AsgAC~ApsdAC]
i>>c:\wnmath22\packages\alil\jpsideca\Diff.ma;

wl=M*x1/2;

WZ=M*x2/2;

W3=M-wl-w2;

®x3=2-x1-x2;

six = <<c:\wnmathZ2\packages\ali\jpsideca\Diff.ma;

XX 2=Expand[six* (1/3)* (1/6)*a3};

al0=(1/2)*Q"3*3grt (M]*Psi;

ad={1/6)*Q"3*3qrt (M]*M"*"2*Dpsi;

AAC=Together [XX2]>>C:\wnmathZ2\packages\ali\jpsideca\AAC.ma
XX=<<C:\wnmath22\packages\aliljpsidecal\AAl . ma;

X1l=1-5/M"2;

x2=1-t£/M"2;

®3=1-u/M"2;

M=3grt(s+t+ul;

AAC = Simplify[XX¥] >> c:\wmmath22\packagesi\ali\jpsidecalaac.ma
ARC=<<C:\wnmatn22\packagesialilNijpsideca\hAC. . ma

€
(256 Dpsi Psi O Sgrtis + £t + u]

5 2 4 3 3 4 2 5 5
(1 5 ¢ + 35 s ¢ + 35s ¢ + 1% s5 t - 42 5 t u -
4 2z 3 3 2 4 5 5 2
33 s £ u+ 268 £t u-33s t u-42 st u+ 15 s u -~
4 2 i 2 2 2 3 2 4 2
33 5 tu + 46 5 £t uwu + 46 s5 € u - 33I st u +
5 2 4 3 3 3 2 2 3 3 3
15t u + 3583 wu + 265 tu + 46 s £t u + 26 st u o+
4 3 3 4 2 4 2 4 3 4
35¢ v + 35 s u =-33s tu -33s € u + 35t u +
2 5 ) 2 5
158 u =42 s cu + 15t u))) /
3 3 3
(27 (s + &) {5 + 1) (b + u) )

{(* The above:

(1)Has been divided by 3 for Jpsi pecl. states.

(2)Has been divided by 6 for 3 identical photons.

(3)Has been multiplied by Q"6*M/4*psi(0)*(1/6)*M"5/2%Dpsi/M~2 *)

{* Now get decay rate by dividing by the flux factor,
multiplying by Dlips, and integrating over x1 and x2. *)

Dlips=M~2/[128+Pi"3};

Flux=2*M;

T4=AAC*Diips/Flux;
di=Factor|[Together |[Expand [T4*M*2/{Q"6* (Dpsi/Psi) *Psi~2)]1]
Mh2E l=xT);

M*2 (1-%2);

MA2 (1-x3):;

[o 0 ]
n




Y6= Coe'f-c1enL{h Glm2,m3)]):
zlaZ2l=Simplify{Coefficient[Y6,qllalf]*qg2[ml]
Z22a2i=Simplify[Coefficient([Y6,gq2lalf)*g2[ml]
z2213a= Slmpllfy[Coefch1ent{Y6,q2[ml]*q3[alf]
Zla3l=Simplify[Coefficient{Y6,qllalf]*q3(ml]
z2al3l=Simplify(Coefficient (Y6,q2{alf]l*q3(ml]
Z3a3l=Simplify(Coefficient{¥6,q3{alfl*q3(ml]
Zllza=Simplify[Coefficient{Y6,ql{ml]*g2[alf]
Z113a= 51mp11fy1Coeff1c1ent[Y6,q1{ml]*q3{alf]
Zlall=Simplify[Coefficient(Ye,gllalf]" ]

72332*q2[m3)*g3[m2] + 21233*ql(m2)*q3[m3) +
22233%*q2[m2] *q3[m3] ) +

gl(ml

'3233*q3m2]*g3{m3] +

Glalf,m2]*(
22331*%q2m3]1*g3{ml]
21331*gl{m3]*q3[ml]
21133*%*ql [m1l]*g3[m3}

Glalf,m3]*(
23132%*q3[ml] *g3[m2]

21321*ql m3]1*q2[ml]

+ Z1113*gl[ml}*gl{m3]
+ 22133*q2(ml]*g3[m3]
) +
Z1231*ql[m2]*g3[ml]

+ Z1112*gql{mll*ql (m2]

+ + +

+

Z2123*q2[mll*g2(m3]
z1123*ql[ml]*q2[m3)]
23133*q3(ml) *g3[m3]

22132*g2{ml)*q3[m2]
21221*gl{m2]*q2[ml]

+

22122%q2[ml ] *qg2{m2] + 22231%gZ2[m2]~g3(ml]
Z1122*ql [ml]*g2[m2] ) +

GIml,m2]* ( Zlald*gl[alf)*ql[m3]
Z132a*gl[mi)l*g2[alf] + Z2a23*g2lalf]*g2{m3)
2233a*q2[m3] *g3(alf) + Zlad3*gllalfj*g3(m3)
Z23a33*g3i[alfl*g3im3) ) +

Glml,m3]*{ ZlalZ*gqlialf]*glim2]
z123a*qglim2)*q3falf] + Zlald2*gllalf)*g3[m2]
23a32*g3lalfl*g3(m2] + Zlaz2*qgl[alf]*g2(m2)
Zzaz22*qg2 lalfl*q2im2] ) +

Gm2,m3}*{ Zla2l*qlf[alf}*g2[ml)
Z213a*q? [mi}*qg3{alf] + Zla3l*gllalf)*qg3[ml)
Z3al3l*qg3[alfi*qg3(ml] + ZllZa*gl[ml]l*g2ialf]
Zlall*ql{alif}*ql [ml] )
Amp=Expand(%];
Expand[T-%])

o

ApsgACa=<<c: \wnmath22\packages\alilerror\ApsgaCa

Aa=Expand[%];

21132*ql [ml]

+
+
+

+

+

*q3[m2] +

Z1la23*gl{alf] *g2[m3)
Z133a*gl{m3]) *g3[alf]
Z2a33*q2lalfl*g3[m3]

2122a*ql [m2]*q2[alf}
Z2a32*q2lalf]*g3[m2]
Z223a*q2[m2] *g3[alf]

Z2a21*g2(alf]*q2(ml]

22a3l*g2(alf]l*q3[ml)}
Z113za*ql{ml]*g3[alf]

maj;

irx>ci\wnmath22\packageshalilipsidecalNtriall .ma;

ApsgACb=<<c:\wnmath22\packages\alilerror\ApsqACh.

Ab=Expand([%]:

gx>ci\wnmath22\packages\aliljpsidecal\trial?.ma;

ApsghCc=<<c:\wnmath22\packages\alilerror\Epsqhlc.

Ac=Expand|[#}];

ma;

E>>ci\wnmath22\packagesialilNjpaidecaltriall.ma;

ApsgACd=<<c:\wnmath22\packagesi\alilerror\&psgACd.

EBd=Expand{%]:

maj;

%>>ci\wnmathZz2\packages\ali\jpsideca\triald.ma;

<<c:\wnmathz2\packages\alilipsideca\Asqal;
Ba=Expand[%];

AsgAC=Together[Ba]>>c:\wnmath22\packages\ali\jpsideca\AsghAll
<<c:\wnmath2Z\packages\aliljpsidecaltriall . ma;

triall=Together[%];

<zc:\wnmath22\packagesialil\jpsidecal\trial? . ma;

trial2=Teogether %)

<<c:\wnmath22\packages\ali\jpsidecaltrial3.ma;

trial3=Togather([%];

<<c:\wnm3th72\pachages\ali\jpsideca\tria14.ma;

triald=Togethex[%
TogethEL[trlal1+tr1al2+trial3+tria14]>>

.majy

c:\wnmath22\packages\ali\jpsideca\ApsghC;




x3 2 - k1l - x2;
04 = d4;
spectd=Integrate (D4, {x2,1-xr1,1}]

integ4=NIntegrate[spectd, {x1,0,1}]

®1=1-5;

Simplify({spectd]

Clear [spectd]

spectd (S ):= (2*(-41 - 58*S - 293*5"°2 -
86*373 + 301*3574 + 130*3"5 +
33*5°6 + 14*5~7 - 15*Log{S5] -
51*S*Log{S] - 406*S~2*LogiS] -
214*5°3*Log[38) -
395*5°4vLoglS) - 167*S*5“Log(S)))/

(27*PLi"3*{-1 + §5)"2*(1 + 5)"5)
S = 1-x1;
2 3
(2 (1248 %1 - 3344 x1 + 3568 %1 - 1935

7
14 ®x1 + 1248 Log({l - x1] - 3920 x1

2 3

4

X1  + 622 xl

Log[l - x1]

5088 x1 Log[l - x1] - 3464 ®1 Legl[l - x1)

4 [

1230 x1 Log[l - x1] - 167 x1 Log[l - x1])) /

3 5 2
{27 P1i (-2 + ®x1) ®x1 )

+

5

+

131 x1

6

+



Program 4.
Needs["Hip Work "];
Preparelindex[alp,bet,mu, nu, rho, lambda];
Clear{Q,1l,n,z,m, M, M0,M2,M4,x,1n,1Q0);
SetDotFroduct ({Q, Q, M 2}, {n,n, 0}, {1, 1, m"2},{¢C, 1,10}, {1,n,1n}, {Q,n,1}];

m= M/2;
{* MO is the matrix element of two guark field oerators at origin *)

MO = {al M2 + a2 M 351([Ql):
M2 = (h/2) M"2 *{ Slash[Q)**Dg|rho) - Dg{rhol**Slash[Q] )} :
M4 = {d1/2) M {-M*3 Glrho,lambda) + M Qlrhoj Q[lambda] - M"2 S1[Q] *
Glrho, lambdal + 31(Q] 0Qflrho] Q]lambda] }
dz(% ,mu ,nu l:= -DPlk,n] Glmu,nul+ (kimul*n{nu)+k{nu]*n(mu} )
d3(k_,mu ,nu ,rho ] := -2 x[rho) d2[k,mu,nul DP[k,n} + DP(k,k]*
T { -k{mul*ninul*nlrhel-k(nu)l n{mu} nirhol+ (Glrhe,me] nlnul+
G{rnho,nu)] nimu} } * DP[(k,n]):
dd(k ,mu ,nu_,alp ,bet ] := DP[k,k] DPik,n] ( -2 (DP(k,n} Glalp,bet] +
xlalp) nlbet] ) d2[%, mu,nu] +
(2 klbhet] DP[%,n]+DPI[k,k] nibetl) { Glmu,alp) nlnu] +

Glalp,nu] nlmul) -

2 x[lalp) PP[k,n] {-n[khet] Glmu,nu] + n[nu} Glbet,mu] +
nimu] Glbet,nu)}-

DE{k,k] (nlalp) nlnu} G{mu,bet] + nlalp] nimu] G[nu,bet]} -

2 klbet] ( nlalp] kimu) ninu] + nfalp] kinv) n[mul) 7=
2 { 2 ¥X[bet] DP[n,k)+n[bet] DP{k,k]) ) d3[k,mu,nu,alp)
ABL = - Tr[31l(n]**(S1[Q+1]+m)**Dglalpl**MO0**Dg(bet)**

(=S1[L}+m)**Dgfmu] **M0* *Dg[nu] ** {S1(Q+1]+m) i

AB2 = Tr[S1[n]**(S1[Q+1)+m)**Dglalp]**MO0**Dg[bet]**
(=S1{1l)+m) **Dg[mu} **M2**Dglnu]** {51{Q+1]+m}];

AB3 = Tr{Sl[n]**{(S1{Q+1l]+m)**Dglalp])**M4*+*Dgibet]**
(=S1{li+m)**Dg[mu}**MO0**Dg{nul**{S1L{Q+1l]1+m)];

Expand[ABl * d2[k,bet,alp] |-
Contract[%, {alp,bet}]:
Expand[% * d2[k,mu,nul];
ACl=Contract[%, lmu,nu}l;

Expand [AB2 * d2[k,alp,bet]];

AC2 = Contract|[%,lalp,bet}];

Expand[AC2 * d3[fk,mu,nu,rho)] 1:;

ACZ = Contract([% , {rho,mu,nu}):
Expand[AB3 * dZ[k,mu,nu]j;:

AC3 = Contractc(®, {mu,nu}]:;

d4 [k, bet,alp, rho, lambdal;

Expand [AC3 * §];

AC3 = Ceontract(% , {rho, lambda,bet,alp}];

19 = (M™2 % + m™2) / (2(1/=z-1)) + (l/=z-1) M"2/2;
In = (1/z-1});

Denoml = {DP[0Q+1,Q+1}-m*2Y"~2 * (DPI{k,k))"2 * (DP[k,n])"2
Denom2 = ([DP{Q+1,Q+1}-m™2)"2 * (DP[k,k]}"3 * {(DP{¥,n})"3 ;
Denom3 = (DP[{Q+1,0+1)~-m"2)"2 * (DP[k,k]1)"4 * {DP[k,n])"4

k=0Q/2 + 1;

AGl = Simplify [AC1 / Denoml];

AG2 Simplify [AC2 / Denom2]:

AG3 = Simplify [AC3 / Denom3):;

S1 = Integrate[AGl, {x,0,Infinity}];
52 = Integratel[AG2, {x,0,Infinity}];
33 = Integrate(AGS, {x,0,Infinityl}];

al = 1/{2 M~{3/2)) Wfunc;
az = al + 1/ (M~ (7/2)) D2Wfunc;

it



¢} D2WFune / (3 MM {7/2));
dl DZWfunc / (6 M~ {7/2));
Wfunc = RIO/Sqrt[4 Pi):
D2Wfunc = DRs / Sqgrtl{4 Pily

Ccf = 16/ (3*3%];

g = S5qrt[4 Fi alphas];

Resultl = Factor{Cf (M z g~2})"2* 51/ {({l-z) *

(16 Pi™~2))1}:

Result2 = 2 * Together|[Factor(Cf (M z g"2)"2* 52/ ((1-z) *
{16 PL72)))):

Result3 = 2 * Together(Factor{Cf (M z g~2}"*2* §3/ ({l-z) *
(16 Pi~24)11:

Rel = RD™"2 * Factor(Coefficient[Resultl,R0,2) ]

2 2 2 2 3 4
64 alphas RO (-1 + zy =z (48 + 8 z -8z + 3 z )

it b

81 ¥ Pi (-2 + z)
Rel = RO * Factor[Coefficient|{Resultl,R0O,1) ]
z z
1024 alphas DRks RO (-1 + z) 2z (2 + =z}

27 M Pi o2 - z)
ReZ = RO * Factor|[Coefficient[Result2,R0,1]]
~{(512%alphas " 2*DRs*RO* (-1 + )72 z724% (=24 + 4%z + 2%z2°2 + 3*z~31)/
(243*M 5*Pi* (-2 + z}"6);
Re3 = RO * Factor{Coefficient{Result3,R0,1]1
2 2

{512 alphas DRs RC (-1 + z) =z

2 3 4 5 6
(-182 + 336 z - dld6 2z + 192 z - 76 2z + 33z -6z )) /

5 8
(243 ¥ Fi (-2 + z) )

Wincor = Facter!Simplify [Rel + ReZ + Re3))

-

&~ 2
{512 alphas DRs RO (-1 + z) =z

2 3 4 5 6
(96 + 144 z — 528 z + 296 z - 102 z + 43 z - 9 z )y /

5 5]
(243 ¥ Pi (-2 + z) )




